some new features

This commit is contained in:
ilgazca
2025-07-30 18:53:50 +03:00
parent 8019bd3b7c
commit 079804a0fc
2118 changed files with 297840 additions and 502 deletions

View File

@ -0,0 +1,269 @@
"""Container objects for results of CmdStan run(s)."""
import glob
import os
from typing import Any, Dict, List, Optional, Union
from cmdstanpy.cmdstan_args import (
CmdStanArgs,
LaplaceArgs,
OptimizeArgs,
PathfinderArgs,
SamplerArgs,
VariationalArgs,
)
from cmdstanpy.utils import check_sampler_csv, get_logger, scan_config
from .gq import CmdStanGQ
from .laplace import CmdStanLaplace
from .mcmc import CmdStanMCMC
from .metadata import InferenceMetadata
from .mle import CmdStanMLE
from .pathfinder import CmdStanPathfinder
from .runset import RunSet
from .vb import CmdStanVB
__all__ = [
"RunSet",
"InferenceMetadata",
"CmdStanMCMC",
"CmdStanMLE",
"CmdStanVB",
"CmdStanGQ",
"CmdStanLaplace",
"CmdStanPathfinder",
]
def from_csv(
path: Union[str, List[str], os.PathLike, None] = None,
method: Optional[str] = None,
) -> Union[
CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanPathfinder, CmdStanLaplace, None
]:
"""
Instantiate a CmdStan object from a the Stan CSV files from a CmdStan run.
CSV files are specified from either a list of Stan CSV files or a single
filepath which can be either a directory name, a Stan CSV filename, or
a pathname pattern (i.e., a Python glob). The optional argument 'method'
checks that the CSV files were produced by that method.
Stan CSV files from CmdStan methods 'sample', 'optimize', and 'variational'
result in objects of class CmdStanMCMC, CmdStanMLE, and CmdStanVB,
respectively.
:param path: directory path
:param method: method name (optional)
:return: either a CmdStanMCMC, CmdStanMLE, or CmdStanVB object
"""
if path is None:
raise ValueError('Must specify path to Stan CSV files.')
if method is not None and method not in [
'sample',
'optimize',
'variational',
'laplace',
'pathfinder',
]:
raise ValueError(
'Bad method argument {}, must be one of: '
'"sample", "optimize", "variational"'.format(method)
)
csvfiles = []
if isinstance(path, list):
csvfiles = path
elif isinstance(path, str) and '*' in path:
splits = os.path.split(path)
if splits[0] is not None:
if not (os.path.exists(splits[0]) and os.path.isdir(splits[0])):
raise ValueError(
'Invalid path specification, {} '
' unknown directory: {}'.format(path, splits[0])
)
csvfiles = glob.glob(path)
elif isinstance(path, (str, os.PathLike)):
if os.path.exists(path) and os.path.isdir(path):
for file in os.listdir(path):
if os.path.splitext(file)[1] == ".csv":
csvfiles.append(os.path.join(path, file))
elif os.path.exists(path):
csvfiles.append(str(path))
else:
raise ValueError('Invalid path specification: {}'.format(path))
else:
raise ValueError('Invalid path specification: {}'.format(path))
if len(csvfiles) == 0:
raise ValueError('No CSV files found in directory {}'.format(path))
for file in csvfiles:
if not (os.path.exists(file) and os.path.splitext(file)[1] == ".csv"):
raise ValueError(
'Bad CSV file path spec,'
' includes non-csv file: {}'.format(file)
)
config_dict: Dict[str, Any] = {}
try:
with open(csvfiles[0], 'r') as fd:
scan_config(fd, config_dict, 0)
except (IOError, OSError, PermissionError) as e:
raise ValueError('Cannot read CSV file: {}'.format(csvfiles[0])) from e
if 'model' not in config_dict or 'method' not in config_dict:
raise ValueError("File {} is not a Stan CSV file.".format(csvfiles[0]))
if method is not None and method != config_dict['method']:
raise ValueError(
'Expecting Stan CSV output files from method {}, '
' found outputs from method {}'.format(
method, config_dict['method']
)
)
try:
if config_dict['method'] == 'sample':
chains = len(csvfiles)
sampler_args = SamplerArgs(
iter_sampling=config_dict['num_samples'],
iter_warmup=config_dict['num_warmup'],
thin=config_dict['thin'],
save_warmup=config_dict['save_warmup'],
)
# bugfix 425, check for fixed_params output
try:
check_sampler_csv(
csvfiles[0],
iter_sampling=config_dict['num_samples'],
iter_warmup=config_dict['num_warmup'],
thin=config_dict['thin'],
save_warmup=config_dict['save_warmup'],
)
except ValueError:
try:
check_sampler_csv(
csvfiles[0],
is_fixed_param=True,
iter_sampling=config_dict['num_samples'],
iter_warmup=config_dict['num_warmup'],
thin=config_dict['thin'],
save_warmup=config_dict['save_warmup'],
)
sampler_args = SamplerArgs(
iter_sampling=config_dict['num_samples'],
iter_warmup=config_dict['num_warmup'],
thin=config_dict['thin'],
save_warmup=config_dict['save_warmup'],
fixed_param=True,
)
except ValueError as e:
raise ValueError(
'Invalid or corrupt Stan CSV output file, '
) from e
cmdstan_args = CmdStanArgs(
model_name=config_dict['model'],
model_exe=config_dict['model'],
chain_ids=[x + 1 for x in range(chains)],
method_args=sampler_args,
)
runset = RunSet(args=cmdstan_args, chains=chains)
runset._csv_files = csvfiles
for i in range(len(runset._retcodes)):
runset._set_retcode(i, 0)
fit = CmdStanMCMC(runset)
fit.draws()
return fit
elif config_dict['method'] == 'optimize':
if 'algorithm' not in config_dict:
raise ValueError(
"Cannot find optimization algorithm"
" in file {}.".format(csvfiles[0])
)
optimize_args = OptimizeArgs(
algorithm=config_dict['algorithm'],
save_iterations=config_dict['save_iterations'],
jacobian=config_dict.get('jacobian', 0),
)
cmdstan_args = CmdStanArgs(
model_name=config_dict['model'],
model_exe=config_dict['model'],
chain_ids=None,
method_args=optimize_args,
)
runset = RunSet(args=cmdstan_args)
runset._csv_files = csvfiles
for i in range(len(runset._retcodes)):
runset._set_retcode(i, 0)
return CmdStanMLE(runset)
elif config_dict['method'] == 'variational':
if 'algorithm' not in config_dict:
raise ValueError(
"Cannot find variational algorithm"
" in file {}.".format(csvfiles[0])
)
variational_args = VariationalArgs(
algorithm=config_dict['algorithm'],
iter=config_dict['iter'],
grad_samples=config_dict['grad_samples'],
elbo_samples=config_dict['elbo_samples'],
eta=config_dict['eta'],
tol_rel_obj=config_dict['tol_rel_obj'],
eval_elbo=config_dict['eval_elbo'],
output_samples=config_dict['output_samples'],
)
cmdstan_args = CmdStanArgs(
model_name=config_dict['model'],
model_exe=config_dict['model'],
chain_ids=None,
method_args=variational_args,
)
runset = RunSet(args=cmdstan_args)
runset._csv_files = csvfiles
for i in range(len(runset._retcodes)):
runset._set_retcode(i, 0)
return CmdStanVB(runset)
elif config_dict['method'] == 'laplace':
laplace_args = LaplaceArgs(
mode=config_dict['mode'],
draws=config_dict['draws'],
jacobian=config_dict['jacobian'],
)
cmdstan_args = CmdStanArgs(
model_name=config_dict['model'],
model_exe=config_dict['model'],
chain_ids=None,
method_args=laplace_args,
)
runset = RunSet(args=cmdstan_args)
runset._csv_files = csvfiles
for i in range(len(runset._retcodes)):
runset._set_retcode(i, 0)
mode: CmdStanMLE = from_csv(
config_dict['mode'],
method='optimize',
) # type: ignore
return CmdStanLaplace(runset, mode=mode)
elif config_dict['method'] == 'pathfinder':
pathfinder_args = PathfinderArgs(
num_draws=config_dict['num_draws'],
num_paths=config_dict['num_paths'],
)
cmdstan_args = CmdStanArgs(
model_name=config_dict['model'],
model_exe=config_dict['model'],
chain_ids=None,
method_args=pathfinder_args,
)
runset = RunSet(args=cmdstan_args)
runset._csv_files = csvfiles
for i in range(len(runset._retcodes)):
runset._set_retcode(i, 0)
return CmdStanPathfinder(runset)
else:
get_logger().info(
'Unable to process CSV output files from method %s.',
(config_dict['method']),
)
return None
except (IOError, OSError, PermissionError) as e:
raise ValueError(
'An error occurred processing the CSV files:\n\t{}'.format(str(e))
) from e

View File

@ -0,0 +1,734 @@
"""
Container for the result of running the
generate quantities (GQ) method
"""
from collections import Counter
from typing import (
Any,
Dict,
Generic,
Hashable,
List,
MutableMapping,
NoReturn,
Optional,
Tuple,
TypeVar,
Union,
overload,
)
import numpy as np
import pandas as pd
try:
import xarray as xr
XARRAY_INSTALLED = True
except ImportError:
XARRAY_INSTALLED = False
from cmdstanpy.cmdstan_args import Method
from cmdstanpy.utils import build_xarray_data, flatten_chains, get_logger
from cmdstanpy.utils.stancsv import scan_generic_csv
from .mcmc import CmdStanMCMC
from .metadata import InferenceMetadata
from .mle import CmdStanMLE
from .runset import RunSet
from .vb import CmdStanVB
Fit = TypeVar('Fit', CmdStanMCMC, CmdStanMLE, CmdStanVB)
class CmdStanGQ(Generic[Fit]):
"""
Container for outputs from CmdStan generate_quantities run.
Created by :meth:`CmdStanModel.generate_quantities`.
"""
def __init__(
self,
runset: RunSet,
previous_fit: Fit,
) -> None:
"""Initialize object."""
if not runset.method == Method.GENERATE_QUANTITIES:
raise ValueError(
'Wrong runset method, expecting generate_quantities runset, '
'found method {}'.format(runset.method)
)
self.runset = runset
self.previous_fit: Fit = previous_fit
self._draws: np.ndarray = np.array(())
config = self._validate_csv_files()
self._metadata = InferenceMetadata(config)
def __repr__(self) -> str:
repr = 'CmdStanGQ: model={} chains={}{}'.format(
self.runset.model,
self.chains,
self.runset._args.method_args.compose(0, cmd=[]),
)
repr = '{}\n csv_files:\n\t{}\n output_files:\n\t{}'.format(
repr,
'\n\t'.join(self.runset.csv_files),
'\n\t'.join(self.runset.stdout_files),
)
return repr
def __getattr__(self, attr: str) -> np.ndarray:
"""Synonymous with ``fit.stan_variable(attr)"""
if attr.startswith("_"):
raise AttributeError(f"Unknown variable name {attr}")
try:
return self.stan_variable(attr)
except ValueError as e:
# pylint: disable=raise-missing-from
raise AttributeError(*e.args)
def __getstate__(self) -> dict:
# This function returns the mapping of objects to serialize with pickle.
# See https://docs.python.org/3/library/pickle.html#object.__getstate__
# for details. We call _assemble_generated_quantities to ensure
# the data are loaded prior to serialization.
self._assemble_generated_quantities()
return self.__dict__
def _validate_csv_files(self) -> Dict[str, Any]:
"""
Checks that Stan CSV output files for all chains are consistent
and returns dict containing config and column names.
Raises exception when inconsistencies detected.
"""
dzero = {}
for i in range(self.chains):
if i == 0:
dzero = scan_generic_csv(
path=self.runset.csv_files[i],
)
else:
drest = scan_generic_csv(
path=self.runset.csv_files[i],
)
for key in dzero:
if (
key
not in [
'id',
'fitted_params',
'diagnostic_file',
'metric_file',
'profile_file',
'init',
'seed',
'start_datetime',
]
and dzero[key] != drest[key]
):
raise ValueError(
'CmdStan config mismatch in Stan CSV file {}: '
'arg {} is {}, expected {}'.format(
self.runset.csv_files[i],
key,
dzero[key],
drest[key],
)
)
return dzero
@property
def chains(self) -> int:
"""Number of chains."""
return self.runset.chains
@property
def chain_ids(self) -> List[int]:
"""Chain ids."""
return self.runset.chain_ids
@property
def column_names(self) -> Tuple[str, ...]:
"""
Names of generated quantities of interest.
"""
return self._metadata.cmdstan_config['column_names'] # type: ignore
@property
def metadata(self) -> InferenceMetadata:
"""
Returns object which contains CmdStan configuration as well as
information about the names and structure of the inference method
and model output variables.
"""
return self._metadata
def draws(
self,
*,
inc_warmup: bool = False,
inc_iterations: bool = False,
concat_chains: bool = False,
inc_sample: bool = False,
) -> np.ndarray:
"""
Returns a numpy.ndarray over the generated quantities draws from
all chains which is stored column major so that the values
for a parameter are contiguous in memory, likewise all draws from
a chain are contiguous. By default, returns a 3D array arranged
(draws, chains, columns); parameter ``concat_chains=True`` will
return a 2D array where all chains are flattened into a single column,
preserving chain order, so that given M chains of N draws,
the first N draws are from chain 1, ..., and the the last N draws
are from chain M.
:param inc_warmup: When ``True`` and the warmup draws are present in
the output, i.e., the sampler was run with ``save_warmup=True``,
then the warmup draws are included. Default value is ``False``.
:param concat_chains: When ``True`` return a 2D array flattening all
all draws from all chains. Default value is ``False``.
:param inc_sample: When ``True`` include all columns in the previous_fit
draws array as well, excepting columns for variables already present
in the generated quantities drawset. Default value is ``False``.
See Also
--------
CmdStanGQ.draws_pd
CmdStanGQ.draws_xr
CmdStanMCMC.draws
"""
self._assemble_generated_quantities()
inc_warmup |= inc_iterations
if inc_warmup:
if (
isinstance(self.previous_fit, CmdStanMCMC)
and not self.previous_fit._save_warmup
):
get_logger().warning(
"Sample doesn't contain draws from warmup iterations,"
' rerun sampler with "save_warmup=True".'
)
elif (
isinstance(self.previous_fit, CmdStanMLE)
and not self.previous_fit._save_iterations
):
get_logger().warning(
"MLE doesn't contain draws from pre-convergence iterations,"
' rerun optimization with "save_iterations=True".'
)
elif isinstance(self.previous_fit, CmdStanVB):
get_logger().warning(
"Variational fit doesn't make sense with argument "
'"inc_warmup=True"'
)
if inc_sample:
cols_1 = self.previous_fit.column_names
cols_2 = self.column_names
dups = [
item
for item, count in Counter(cols_1 + cols_2).items()
if count > 1
]
drop_cols: List[int] = []
for dup in dups:
drop_cols.extend(
self.previous_fit._metadata.stan_vars[dup].columns()
)
start_idx, _ = self._draws_start(inc_warmup)
previous_draws = self._previous_draws(True)
if concat_chains and inc_sample:
return flatten_chains(
np.dstack(
(
np.delete(previous_draws, drop_cols, axis=1),
self._draws,
)
)[start_idx:, :, :]
)
if concat_chains:
return flatten_chains(self._draws[start_idx:, :, :])
if inc_sample:
return np.dstack(
(
np.delete(previous_draws, drop_cols, axis=1),
self._draws,
)
)[start_idx:, :, :]
return self._draws[start_idx:, :, :]
def draws_pd(
self,
vars: Union[List[str], str, None] = None,
inc_warmup: bool = False,
inc_sample: bool = False,
) -> pd.DataFrame:
"""
Returns the generated quantities draws as a pandas DataFrame.
Flattens all chains into single column. Container variables
(array, vector, matrix) will span multiple columns, one column
per element. E.g. variable 'matrix[2,2] foo' spans 4 columns:
'foo[1,1], ... foo[2,2]'.
:param vars: optional list of variable names.
:param inc_warmup: When ``True`` and the warmup draws are present in
the output, i.e., the sampler was run with ``save_warmup=True``,
then the warmup draws are included. Default value is ``False``.
See Also
--------
CmdStanGQ.draws
CmdStanGQ.draws_xr
CmdStanMCMC.draws_pd
"""
if vars is not None:
if isinstance(vars, str):
vars_list = [vars]
else:
vars_list = vars
vars_list = list(dict.fromkeys(vars_list))
if inc_warmup:
if (
isinstance(self.previous_fit, CmdStanMCMC)
and not self.previous_fit._save_warmup
):
get_logger().warning(
"Sample doesn't contain draws from warmup iterations,"
' rerun sampler with "save_warmup=True".'
)
elif (
isinstance(self.previous_fit, CmdStanMLE)
and not self.previous_fit._save_iterations
):
get_logger().warning(
"MLE doesn't contain draws from pre-convergence iterations,"
' rerun optimization with "save_iterations=True".'
)
elif isinstance(self.previous_fit, CmdStanVB):
get_logger().warning(
"Variational fit doesn't make sense with argument "
'"inc_warmup=True"'
)
self._assemble_generated_quantities()
all_columns = ['chain__', 'iter__', 'draw__'] + list(self.column_names)
gq_cols: List[str] = []
mcmc_vars: List[str] = []
if vars is not None:
for var in vars_list:
if var in self._metadata.stan_vars:
info = self._metadata.stan_vars[var]
gq_cols.extend(
self.column_names[info.start_idx : info.end_idx]
)
elif (
inc_sample and var in self.previous_fit._metadata.stan_vars
):
info = self.previous_fit._metadata.stan_vars[var]
mcmc_vars.extend(
self.previous_fit.column_names[
info.start_idx : info.end_idx
]
)
elif var in ['chain__', 'iter__', 'draw__']:
gq_cols.append(var)
else:
raise ValueError('Unknown variable: {}'.format(var))
else:
gq_cols = all_columns
vars_list = gq_cols
previous_draws_pd = self._previous_draws_pd(mcmc_vars, inc_warmup)
draws = self.draws(inc_warmup=inc_warmup)
# add long-form columns for chain, iteration, draw
n_draws, n_chains, _ = draws.shape
chains_col = (
np.repeat(np.arange(1, n_chains + 1), n_draws)
.reshape(1, n_chains, n_draws)
.T
)
iter_col = (
np.tile(np.arange(1, n_draws + 1), n_chains)
.reshape(1, n_chains, n_draws)
.T
)
draw_col = (
np.arange(1, (n_draws * n_chains) + 1)
.reshape(1, n_chains, n_draws)
.T
)
draws = np.concatenate([chains_col, iter_col, draw_col, draws], axis=2)
draws_pd = pd.DataFrame(
data=flatten_chains(draws),
columns=all_columns,
)
if inc_sample and mcmc_vars:
if gq_cols:
return pd.concat(
[
previous_draws_pd,
draws_pd[gq_cols],
],
axis='columns',
)[vars_list]
else:
return previous_draws_pd
elif inc_sample and vars is None:
cols_1 = list(previous_draws_pd.columns)
cols_2 = list(draws_pd.columns)
dups = [
item
for item, count in Counter(cols_1 + cols_2).items()
if count > 1
]
return pd.concat(
[
previous_draws_pd.drop(columns=dups).reset_index(drop=True),
draws_pd,
],
axis=1,
)
elif gq_cols:
return draws_pd[gq_cols]
return draws_pd
@overload
def draws_xr(
self: Union["CmdStanGQ[CmdStanMLE]", "CmdStanGQ[CmdStanVB]"],
vars: Union[str, List[str], None] = None,
inc_warmup: bool = False,
inc_sample: bool = False,
) -> NoReturn:
...
@overload
def draws_xr(
self: "CmdStanGQ[CmdStanMCMC]",
vars: Union[str, List[str], None] = None,
inc_warmup: bool = False,
inc_sample: bool = False,
) -> "xr.Dataset":
...
def draws_xr(
self,
vars: Union[str, List[str], None] = None,
inc_warmup: bool = False,
inc_sample: bool = False,
) -> "xr.Dataset":
"""
Returns the generated quantities draws as a xarray Dataset.
This method can only be called when the underlying fit was made
through sampling, it cannot be used on MLE or VB outputs.
:param vars: optional list of variable names.
:param inc_warmup: When ``True`` and the warmup draws are present in
the MCMC sample, then the warmup draws are included.
Default value is ``False``.
See Also
--------
CmdStanGQ.draws
CmdStanGQ.draws_pd
CmdStanMCMC.draws_xr
"""
if not XARRAY_INSTALLED:
raise RuntimeError(
'Package "xarray" is not installed, cannot produce draws array.'
)
if not isinstance(self.previous_fit, CmdStanMCMC):
raise RuntimeError(
'Method "draws_xr" is only available when '
'original fit is done via Sampling.'
)
mcmc_vars_list = []
dup_vars = []
if vars is not None:
if isinstance(vars, str):
vars_list = [vars]
else:
vars_list = vars
for var in vars_list:
if var not in self._metadata.stan_vars:
if inc_sample and (
var in self.previous_fit._metadata.stan_vars
):
mcmc_vars_list.append(var)
dup_vars.append(var)
else:
raise ValueError('Unknown variable: {}'.format(var))
else:
vars_list = list(self._metadata.stan_vars.keys())
if inc_sample:
for var in self.previous_fit._metadata.stan_vars.keys():
if var not in vars_list and var not in mcmc_vars_list:
mcmc_vars_list.append(var)
for var in dup_vars:
vars_list.remove(var)
self._assemble_generated_quantities()
num_draws = self.previous_fit.num_draws_sampling
sample_config = self.previous_fit._metadata.cmdstan_config
attrs: MutableMapping[Hashable, Any] = {
"stan_version": f"{sample_config['stan_version_major']}."
f"{sample_config['stan_version_minor']}."
f"{sample_config['stan_version_patch']}",
"model": sample_config["model"],
"num_draws_sampling": num_draws,
}
if inc_warmup and sample_config['save_warmup']:
num_draws += self.previous_fit.num_draws_warmup
attrs["num_draws_warmup"] = self.previous_fit.num_draws_warmup
data: MutableMapping[Hashable, Any] = {}
coordinates: MutableMapping[Hashable, Any] = {
"chain": self.chain_ids,
"draw": np.arange(num_draws),
}
for var in vars_list:
build_xarray_data(
data,
self._metadata.stan_vars[var],
self.draws(inc_warmup=inc_warmup),
)
if inc_sample:
for var in mcmc_vars_list:
build_xarray_data(
data,
self.previous_fit._metadata.stan_vars[var],
self.previous_fit.draws(inc_warmup=inc_warmup),
)
return xr.Dataset(data, coords=coordinates, attrs=attrs).transpose(
'chain', 'draw', ...
)
def stan_variable(self, var: str, **kwargs: bool) -> np.ndarray:
"""
Return a numpy.ndarray which contains the set of draws
for the named Stan program variable. Flattens the chains,
leaving the draws in chain order. The first array dimension,
corresponds to number of draws in the sample.
The remaining dimensions correspond to
the shape of the Stan program variable.
Underlyingly draws are in chain order, i.e., for a sample with
N chains of M draws each, the first M array elements are from chain 1,
the next M are from chain 2, and the last M elements are from chain N.
* If the variable is a scalar variable, the return array has shape
( draws * chains, 1).
* If the variable is a vector, the return array has shape
( draws * chains, len(vector))
* If the variable is a matrix, the return array has shape
( draws * chains, size(dim 1), size(dim 2) )
* If the variable is an array with N dimensions, the return array
has shape ( draws * chains, size(dim 1), ..., size(dim N))
For example, if the Stan program variable ``theta`` is a 3x3 matrix,
and the sample consists of 4 chains with 1000 post-warmup draws,
this function will return a numpy.ndarray with shape (4000,3,3).
This functionaltiy is also available via a shortcut using ``.`` -
writing ``fit.a`` is a synonym for ``fit.stan_variable("a")``
:param var: variable name
:param kwargs: Additional keyword arguments are passed to the underlying
fit's ``stan_variable`` method if the variable is not a generated
quantity.
See Also
--------
CmdStanGQ.stan_variables
CmdStanMCMC.stan_variable
CmdStanMLE.stan_variable
CmdStanPathfinder.stan_variable
CmdStanVB.stan_variable
CmdStanLaplace.stan_variable
"""
model_var_names = self.previous_fit._metadata.stan_vars.keys()
gq_var_names = self._metadata.stan_vars.keys()
if not (var in model_var_names or var in gq_var_names):
raise ValueError(
f'Unknown variable name: {var}\n'
'Available variables are '
+ ", ".join(model_var_names | gq_var_names)
)
if var not in gq_var_names:
# TODO(2.0) atleast1d may not be needed
return np.atleast_1d( # type: ignore
self.previous_fit.stan_variable(var, **kwargs)
)
# is gq variable
self._assemble_generated_quantities()
draw1, _ = self._draws_start(
inc_warmup=kwargs.get('inc_warmup', False)
or kwargs.get('inc_iterations', False)
)
draws = flatten_chains(self._draws[draw1:])
out: np.ndarray = self._metadata.stan_vars[var].extract_reshape(draws)
return out
def stan_variables(self, **kwargs: bool) -> Dict[str, np.ndarray]:
"""
Return a dictionary mapping Stan program variables names
to the corresponding numpy.ndarray containing the inferred values.
:param kwargs: Additional keyword arguments are passed to the underlying
fit's ``stan_variable`` method if the variable is not a generated
quantity.
See Also
--------
CmdStanGQ.stan_variable
CmdStanMCMC.stan_variables
CmdStanMLE.stan_variables
CmdStanPathfinder.stan_variables
CmdStanVB.stan_variables
CmdStanLaplace.stan_variables
"""
result = {}
sample_var_names = self.previous_fit._metadata.stan_vars.keys()
gq_var_names = self._metadata.stan_vars.keys()
for name in gq_var_names:
result[name] = self.stan_variable(name, **kwargs)
for name in sample_var_names:
if name not in gq_var_names:
result[name] = self.stan_variable(name, **kwargs)
return result
def _assemble_generated_quantities(self) -> None:
if self._draws.shape != (0,):
return
# use numpy loadtxt
_, num_draws = self._draws_start(inc_warmup=True)
gq_sample: np.ndarray = np.empty(
(num_draws, self.chains, len(self.column_names)),
dtype=float,
order='F',
)
for chain in range(self.chains):
with open(self.runset.csv_files[chain], 'r') as fd:
lines = (line for line in fd if not line.startswith('#'))
gq_sample[:, chain, :] = np.loadtxt(
lines, dtype=np.ndarray, ndmin=2, skiprows=1, delimiter=','
)
self._draws = gq_sample
def _draws_start(self, inc_warmup: bool) -> Tuple[int, int]:
draw1 = 0
p_fit = self.previous_fit
if isinstance(p_fit, CmdStanMCMC):
num_draws = p_fit.num_draws_sampling
if p_fit._save_warmup:
if inc_warmup:
num_draws += p_fit.num_draws_warmup
else:
draw1 = p_fit.num_draws_warmup
elif isinstance(p_fit, CmdStanMLE):
num_draws = 1
if p_fit._save_iterations:
opt_iters = len(p_fit.optimized_iterations_np) # type: ignore
if inc_warmup:
num_draws = opt_iters
else:
draw1 = opt_iters - 1
else: # CmdStanVB:
draw1 = 1 # skip mean
num_draws = p_fit.variational_sample.shape[0]
if inc_warmup:
num_draws += 1
return draw1, num_draws
def _previous_draws(self, inc_warmup: bool) -> np.ndarray:
"""
Extract the draws from self.previous_fit.
Return is always 3-d
"""
p_fit = self.previous_fit
if isinstance(p_fit, CmdStanMCMC):
return p_fit.draws(inc_warmup=inc_warmup)
elif isinstance(p_fit, CmdStanMLE):
if inc_warmup and p_fit._save_iterations:
return p_fit.optimized_iterations_np[:, None] # type: ignore
return np.atleast_2d( # type: ignore
p_fit.optimized_params_np,
)[:, None]
else: # CmdStanVB:
if inc_warmup:
return np.vstack(
[p_fit.variational_params_np, p_fit.variational_sample]
)[:, None]
return p_fit.variational_sample[:, None]
def _previous_draws_pd(
self, vars: List[str], inc_warmup: bool
) -> pd.DataFrame:
if vars:
sel: Union[List[str], slice] = vars
else:
sel = slice(None, None)
p_fit = self.previous_fit
if isinstance(p_fit, CmdStanMCMC):
return p_fit.draws_pd(vars or None, inc_warmup=inc_warmup)
elif isinstance(p_fit, CmdStanMLE):
if inc_warmup and p_fit._save_iterations:
return p_fit.optimized_iterations_pd[sel] # type: ignore
else:
return p_fit.optimized_params_pd[sel]
else: # CmdStanVB:
return p_fit.variational_sample_pd[sel]
def save_csvfiles(self, dir: Optional[str] = None) -> None:
"""
Move output CSV files to specified directory. If files were
written to the temporary session directory, clean filename.
E.g., save 'bernoulli-201912081451-1-5nm6as7u.csv' as
'bernoulli-201912081451-1.csv'.
:param dir: directory path
See Also
--------
stanfit.RunSet.save_csvfiles
cmdstanpy.from_csv
"""
self.runset.save_csvfiles(dir)
# TODO(2.0): remove
@property
def mcmc_sample(self) -> Union[CmdStanMCMC, CmdStanMLE, CmdStanVB]:
get_logger().warning(
"Property `mcmc_sample` is deprecated, use `previous_fit` instead"
)
return self.previous_fit

View File

@ -0,0 +1,304 @@
"""
Container for the result of running a laplace approximation.
"""
from typing import (
Any,
Dict,
Hashable,
List,
MutableMapping,
Optional,
Tuple,
Union,
)
import numpy as np
import pandas as pd
try:
import xarray as xr
XARRAY_INSTALLED = True
except ImportError:
XARRAY_INSTALLED = False
from cmdstanpy.cmdstan_args import Method
from cmdstanpy.utils.data_munging import build_xarray_data
from cmdstanpy.utils.stancsv import scan_generic_csv
from .metadata import InferenceMetadata
from .mle import CmdStanMLE
from .runset import RunSet
# TODO list:
# - docs and example notebook
# - make sure features like standalone GQ are updated/working
class CmdStanLaplace:
def __init__(self, runset: RunSet, mode: CmdStanMLE) -> None:
"""Initialize object."""
if not runset.method == Method.LAPLACE:
raise ValueError(
'Wrong runset method, expecting laplace runset, '
'found method {}'.format(runset.method)
)
self._runset = runset
self._mode = mode
self._draws: np.ndarray = np.array(())
config = scan_generic_csv(runset.csv_files[0])
self._metadata = InferenceMetadata(config)
def _assemble_draws(self) -> None:
if self._draws.shape != (0,):
return
with open(self._runset.csv_files[0], 'r') as fd:
while (fd.readline()).startswith("#"):
pass
self._draws = np.loadtxt(
fd,
dtype=float,
ndmin=2,
delimiter=',',
comments="#",
)
def stan_variable(self, var: str) -> np.ndarray:
"""
Return a numpy.ndarray which contains the estimates for the
for the named Stan program variable where the dimensions of the
numpy.ndarray match the shape of the Stan program variable.
This functionaltiy is also available via a shortcut using ``.`` -
writing ``fit.a`` is a synonym for ``fit.stan_variable("a")``
:param var: variable name
See Also
--------
CmdStanMLE.stan_variables
CmdStanMCMC.stan_variable
CmdStanPathfinder.stan_variable
CmdStanVB.stan_variable
CmdStanGQ.stan_variable
"""
self._assemble_draws()
try:
out: np.ndarray = self._metadata.stan_vars[var].extract_reshape(
self._draws
)
return out
except KeyError:
# pylint: disable=raise-missing-from
raise ValueError(
f'Unknown variable name: {var}\n'
'Available variables are '
+ ", ".join(self._metadata.stan_vars.keys())
)
def stan_variables(self) -> Dict[str, np.ndarray]:
"""
Return a dictionary mapping Stan program variables names
to the corresponding numpy.ndarray containing the inferred values.
:param inc_warmup: When ``True`` and the warmup draws are present in
the MCMC sample, then the warmup draws are included.
Default value is ``False``
See Also
--------
CmdStanGQ.stan_variable
CmdStanMCMC.stan_variables
CmdStanMLE.stan_variables
CmdStanPathfinder.stan_variables
CmdStanVB.stan_variables
"""
result = {}
for name in self._metadata.stan_vars:
result[name] = self.stan_variable(name)
return result
def method_variables(self) -> Dict[str, np.ndarray]:
"""
Returns a dictionary of all sampler variables, i.e., all
output column names ending in `__`. Assumes that all variables
are scalar variables where column name is variable name.
Maps each column name to a numpy.ndarray (draws x chains x 1)
containing per-draw diagnostic values.
"""
self._assemble_draws()
return {
name: var.extract_reshape(self._draws)
for name, var in self._metadata.method_vars.items()
}
def draws(self) -> np.ndarray:
"""
Return a numpy.ndarray containing the draws from the
approximate posterior distribution. This is a 2-D array
of shape (draws, parameters).
"""
self._assemble_draws()
return self._draws
def draws_pd(
self,
vars: Union[List[str], str, None] = None,
) -> pd.DataFrame:
if vars is not None:
if isinstance(vars, str):
vars_list = [vars]
else:
vars_list = vars
self._assemble_draws()
cols = []
if vars is not None:
for var in dict.fromkeys(vars_list):
if var in self._metadata.method_vars:
cols.append(var)
elif var in self._metadata.stan_vars:
info = self._metadata.stan_vars[var]
cols.extend(
self.column_names[info.start_idx : info.end_idx]
)
else:
raise ValueError(f'Unknown variable: {var}')
else:
cols = list(self.column_names)
return pd.DataFrame(self._draws, columns=self.column_names)[cols]
def draws_xr(
self,
vars: Union[str, List[str], None] = None,
) -> "xr.Dataset":
"""
Returns the sampler draws as a xarray Dataset.
:param vars: optional list of variable names.
See Also
--------
CmdStanMCMC.draws_xr
CmdStanGQ.draws_xr
"""
if not XARRAY_INSTALLED:
raise RuntimeError(
'Package "xarray" is not installed, cannot produce draws array.'
)
if vars is None:
vars_list = list(self._metadata.stan_vars.keys())
elif isinstance(vars, str):
vars_list = [vars]
else:
vars_list = vars
self._assemble_draws()
meta = self._metadata.cmdstan_config
attrs: MutableMapping[Hashable, Any] = {
"stan_version": f"{meta['stan_version_major']}."
f"{meta['stan_version_minor']}.{meta['stan_version_patch']}",
"model": meta["model"],
}
data: MutableMapping[Hashable, Any] = {}
coordinates: MutableMapping[Hashable, Any] = {
"draw": np.arange(self._draws.shape[0]),
}
for var in vars_list:
build_xarray_data(
data,
self._metadata.stan_vars[var],
self._draws[:, np.newaxis, :],
)
return (
xr.Dataset(data, coords=coordinates, attrs=attrs)
.transpose('draw', ...)
.squeeze()
)
@property
def mode(self) -> CmdStanMLE:
"""
Return the maximum a posteriori estimate (mode)
as a :class:`CmdStanMLE` object.
"""
return self._mode
@property
def metadata(self) -> InferenceMetadata:
"""
Returns object which contains CmdStan configuration as well as
information about the names and structure of the inference method
and model output variables.
"""
return self._metadata
def __repr__(self) -> str:
mode = '\n'.join(
['\t' + line for line in repr(self.mode).splitlines()]
)[1:]
rep = 'CmdStanLaplace: model={} \nmode=({})\n{}'.format(
self._runset.model,
mode,
self._runset._args.method_args.compose(0, cmd=[]),
)
rep = '{}\n csv_files:\n\t{}\n output_files:\n\t{}'.format(
rep,
'\n\t'.join(self._runset.csv_files),
'\n\t'.join(self._runset.stdout_files),
)
return rep
def __getattr__(self, attr: str) -> np.ndarray:
"""Synonymous with ``fit.stan_variable(attr)"""
if attr.startswith("_"):
raise AttributeError(f"Unknown variable name {attr}")
try:
return self.stan_variable(attr)
except ValueError as e:
# pylint: disable=raise-missing-from
raise AttributeError(*e.args)
def __getstate__(self) -> dict:
# This function returns the mapping of objects to serialize with pickle.
# See https://docs.python.org/3/library/pickle.html#object.__getstate__
# for details. We call _assemble_draws to ensure posterior samples have
# been loaded prior to serialization.
self._assemble_draws()
return self.__dict__
@property
def column_names(self) -> Tuple[str, ...]:
"""
Names of all outputs from the sampler, comprising sampler parameters
and all components of all model parameters, transformed parameters,
and quantities of interest. Corresponds to Stan CSV file header row,
with names munged to array notation, e.g. `beta[1]` not `beta.1`.
"""
return self._metadata.cmdstan_config['column_names'] # type: ignore
def save_csvfiles(self, dir: Optional[str] = None) -> None:
"""
Move output CSV files to specified directory. If files were
written to the temporary session directory, clean filename.
E.g., save 'bernoulli-201912081451-1-5nm6as7u.csv' as
'bernoulli-201912081451-1.csv'.
:param dir: directory path
See Also
--------
stanfit.RunSet.save_csvfiles
cmdstanpy.from_csv
"""
self._runset.save_csvfiles(dir)

View File

@ -0,0 +1,826 @@
"""
Container for the result of running the sample (MCMC) method
"""
import math
import os
from io import StringIO
from typing import (
Any,
Dict,
Hashable,
List,
MutableMapping,
Optional,
Sequence,
Tuple,
Union,
)
import numpy as np
import pandas as pd
try:
import xarray as xr
XARRAY_INSTALLED = True
except ImportError:
XARRAY_INSTALLED = False
from cmdstanpy import _CMDSTAN_SAMPLING, _CMDSTAN_THIN, _CMDSTAN_WARMUP, _TMPDIR
from cmdstanpy.cmdstan_args import Method, SamplerArgs
from cmdstanpy.utils import (
EXTENSION,
build_xarray_data,
check_sampler_csv,
cmdstan_path,
cmdstan_version_before,
create_named_text_file,
do_command,
flatten_chains,
get_logger,
)
from .metadata import InferenceMetadata
from .runset import RunSet
class CmdStanMCMC:
"""
Container for outputs from CmdStan sampler run.
Provides methods to summarize and diagnose the model fit
and accessor methods to access the entire sample or
individual items. Created by :meth:`CmdStanModel.sample`
The sample is lazily instantiated on first access of either
the resulting sample or the HMC tuning parameters, i.e., the
step size and metric.
"""
# pylint: disable=too-many-public-methods
def __init__(
self,
runset: RunSet,
) -> None:
"""Initialize object."""
if not runset.method == Method.SAMPLE:
raise ValueError(
'Wrong runset method, expecting sample runset, '
'found method {}'.format(runset.method)
)
self.runset = runset
# info from runset to be exposed
sampler_args = self.runset._args.method_args
assert isinstance(
sampler_args, SamplerArgs
) # make the typechecker happy
self._iter_sampling: int = _CMDSTAN_SAMPLING
if sampler_args.iter_sampling is not None:
self._iter_sampling = sampler_args.iter_sampling
self._iter_warmup: int = _CMDSTAN_WARMUP
if sampler_args.iter_warmup is not None:
self._iter_warmup = sampler_args.iter_warmup
self._thin: int = _CMDSTAN_THIN
if sampler_args.thin is not None:
self._thin = sampler_args.thin
self._is_fixed_param = sampler_args.fixed_param
self._save_warmup: bool = sampler_args.save_warmup
self._sig_figs = runset._args.sig_figs
# info from CSV values, instantiated lazily
self._draws: np.ndarray = np.array(())
# only valid when not is_fixed_param
self._metric: np.ndarray = np.array(())
self._step_size: np.ndarray = np.array(())
self._divergences: np.ndarray = np.zeros(self.runset.chains, dtype=int)
self._max_treedepths: np.ndarray = np.zeros(
self.runset.chains, dtype=int
)
# info from CSV initial comments and header
config = self._validate_csv_files()
self._metadata: InferenceMetadata = InferenceMetadata(config)
if not self._is_fixed_param:
self._check_sampler_diagnostics()
def __repr__(self) -> str:
repr = 'CmdStanMCMC: model={} chains={}{}'.format(
self.runset.model,
self.runset.chains,
self.runset._args.method_args.compose(0, cmd=[]),
)
repr = '{}\n csv_files:\n\t{}\n output_files:\n\t{}'.format(
repr,
'\n\t'.join(self.runset.csv_files),
'\n\t'.join(self.runset.stdout_files),
)
# TODO - hamiltonian, profiling files
return repr
def __getattr__(self, attr: str) -> np.ndarray:
"""Synonymous with ``fit.stan_variable(attr)"""
if attr.startswith("_"):
raise AttributeError(f"Unknown variable name {attr}")
try:
return self.stan_variable(attr)
except ValueError as e:
# pylint: disable=raise-missing-from
raise AttributeError(*e.args)
def __getstate__(self) -> dict:
# This function returns the mapping of objects to serialize with pickle.
# See https://docs.python.org/3/library/pickle.html#object.__getstate__
# for details. We call _assemble_draws to ensure posterior samples have
# been loaded prior to serialization.
self._assemble_draws()
return self.__dict__
@property
def chains(self) -> int:
"""Number of chains."""
return self.runset.chains
@property
def chain_ids(self) -> List[int]:
"""Chain ids."""
return self.runset.chain_ids
@property
def num_draws_warmup(self) -> int:
"""Number of warmup draws per chain, i.e., thinned warmup iterations."""
return int(math.ceil((self._iter_warmup) / self._thin))
@property
def num_draws_sampling(self) -> int:
"""
Number of sampling (post-warmup) draws per chain, i.e.,
thinned sampling iterations.
"""
return int(math.ceil((self._iter_sampling) / self._thin))
@property
def metadata(self) -> InferenceMetadata:
"""
Returns object which contains CmdStan configuration as well as
information about the names and structure of the inference method
and model output variables.
"""
return self._metadata
@property
def column_names(self) -> Tuple[str, ...]:
"""
Names of all outputs from the sampler, comprising sampler parameters
and all components of all model parameters, transformed parameters,
and quantities of interest. Corresponds to Stan CSV file header row,
with names munged to array notation, e.g. `beta[1]` not `beta.1`.
"""
return self._metadata.cmdstan_config['column_names'] # type: ignore
@property
def metric_type(self) -> Optional[str]:
"""
Metric type used for adaptation, either 'diag_e' or 'dense_e', according
to CmdStan arg 'metric'.
When sampler algorithm 'fixed_param' is specified, metric_type is None.
"""
return (
self._metadata.cmdstan_config['metric']
if not self._is_fixed_param
else None
)
@property
def metric(self) -> Optional[np.ndarray]:
"""
Metric used by sampler for each chain.
When sampler algorithm 'fixed_param' is specified, metric is None.
"""
if self._is_fixed_param:
return None
if self._metadata.cmdstan_config['metric'] == 'unit_e':
get_logger().info(
'Unit diagnonal metric, inverse mass matrix size unknown.'
)
return None
self._assemble_draws()
return self._metric
@property
def step_size(self) -> Optional[np.ndarray]:
"""
Step size used by sampler for each chain.
When sampler algorithm 'fixed_param' is specified, step size is None.
"""
self._assemble_draws()
return self._step_size if not self._is_fixed_param else None
@property
def thin(self) -> int:
"""
Period between recorded iterations. (Default is 1).
"""
return self._thin
@property
def divergences(self) -> Optional[np.ndarray]:
"""
Per-chain total number of post-warmup divergent iterations.
When sampler algorithm 'fixed_param' is specified, returns None.
"""
return self._divergences if not self._is_fixed_param else None
@property
def max_treedepths(self) -> Optional[np.ndarray]:
"""
Per-chain total number of post-warmup iterations where the NUTS sampler
reached the maximum allowed treedepth.
When sampler algorithm 'fixed_param' is specified, returns None.
"""
return self._max_treedepths if not self._is_fixed_param else None
def draws(
self, *, inc_warmup: bool = False, concat_chains: bool = False
) -> np.ndarray:
"""
Returns a numpy.ndarray over all draws from all chains which is
stored column major so that the values for a parameter are contiguous
in memory, likewise all draws from a chain are contiguous.
By default, returns a 3D array arranged (draws, chains, columns);
parameter ``concat_chains=True`` will return a 2D array where all
chains are flattened into a single column, preserving chain order,
so that given M chains of N draws, the first N draws are from chain 1,
up through the last N draws from chain M.
:param inc_warmup: When ``True`` and the warmup draws are present in
the output, i.e., the sampler was run with ``save_warmup=True``,
then the warmup draws are included. Default value is ``False``.
:param concat_chains: When ``True`` return a 2D array flattening all
all draws from all chains. Default value is ``False``.
See Also
--------
CmdStanMCMC.draws_pd
CmdStanMCMC.draws_xr
CmdStanGQ.draws
"""
self._assemble_draws()
if inc_warmup and not self._save_warmup:
get_logger().warning(
"Sample doesn't contain draws from warmup iterations,"
' rerun sampler with "save_warmup=True".'
)
start_idx = 0
if not inc_warmup and self._save_warmup:
start_idx = self.num_draws_warmup
if concat_chains:
return flatten_chains(self._draws[start_idx:, :, :])
return self._draws[start_idx:, :, :]
def _validate_csv_files(self) -> Dict[str, Any]:
"""
Checks that Stan CSV output files for all chains are consistent
and returns dict containing config and column names.
Tabulates sampling iters which are divergent or at max treedepth
Raises exception when inconsistencies detected.
"""
dzero = {}
for i in range(self.chains):
if i == 0:
dzero = check_sampler_csv(
path=self.runset.csv_files[i],
is_fixed_param=self._is_fixed_param,
iter_sampling=self._iter_sampling,
iter_warmup=self._iter_warmup,
save_warmup=self._save_warmup,
thin=self._thin,
)
if not self._is_fixed_param:
self._divergences[i] = dzero['ct_divergences']
self._max_treedepths[i] = dzero['ct_max_treedepth']
else:
drest = check_sampler_csv(
path=self.runset.csv_files[i],
is_fixed_param=self._is_fixed_param,
iter_sampling=self._iter_sampling,
iter_warmup=self._iter_warmup,
save_warmup=self._save_warmup,
thin=self._thin,
)
for key in dzero:
# check args that matter for parsing, plus name, version
if (
key
in [
'stan_version_major',
'stan_version_minor',
'stan_version_patch',
'stanc_version',
'model',
'num_samples',
'num_warmup',
'save_warmup',
'thin',
'refresh',
]
and dzero[key] != drest[key]
):
raise ValueError(
'CmdStan config mismatch in Stan CSV file {}: '
'arg {} is {}, expected {}'.format(
self.runset.csv_files[i],
key,
dzero[key],
drest[key],
)
)
if not self._is_fixed_param:
self._divergences[i] = drest['ct_divergences']
self._max_treedepths[i] = drest['ct_max_treedepth']
return dzero
def _check_sampler_diagnostics(self) -> None:
"""
Warn if any iterations ended in divergences or hit maxtreedepth.
"""
if np.any(self._divergences) or np.any(self._max_treedepths):
diagnostics = ['Some chains may have failed to converge.']
ct_iters = self._metadata.cmdstan_config['num_samples']
for i in range(self.runset._chains):
if self._divergences[i] > 0:
diagnostics.append(
f'Chain {i + 1} had {self._divergences[i]} '
'divergent transitions '
f'({((self._divergences[i]/ct_iters)*100):.1f}%)'
)
if self._max_treedepths[i] > 0:
diagnostics.append(
f'Chain {i + 1} had {self._max_treedepths[i]} '
'iterations at max treedepth '
f'({((self._max_treedepths[i]/ct_iters)*100):.1f}%)'
)
diagnostics.append(
'Use the "diagnose()" method on the CmdStanMCMC object'
' to see further information.'
)
get_logger().warning('\n\t'.join(diagnostics))
def _assemble_draws(self) -> None:
"""
Allocates and populates the step size, metric, and sample arrays
by parsing the validated stan_csv files.
"""
if self._draws.shape != (0,):
return
num_draws = self.num_draws_sampling
sampling_iter_start = 0
if self._save_warmup:
num_draws += self.num_draws_warmup
sampling_iter_start = self.num_draws_warmup
self._draws = np.empty(
(num_draws, self.chains, len(self.column_names)),
dtype=float,
order='F',
)
self._step_size = np.empty(self.chains, dtype=float)
for chain in range(self.chains):
with open(self.runset.csv_files[chain], 'r') as fd:
line = fd.readline().strip()
# read initial comments, CSV header row
while len(line) > 0 and line.startswith('#'):
line = fd.readline().strip()
if not self._is_fixed_param:
# handle warmup draws, if any
if self._save_warmup:
for i in range(self.num_draws_warmup):
line = fd.readline().strip()
xs = line.split(',')
self._draws[i, chain, :] = [float(x) for x in xs]
line = fd.readline().strip()
if line != '# Adaptation terminated': # shouldn't happen?
while line != '# Adaptation terminated':
line = fd.readline().strip()
# step_size, metric (diag_e and dense_e only)
line = fd.readline().strip()
_, step_size = line.split('=')
self._step_size[chain] = float(step_size.strip())
if self._metadata.cmdstan_config['metric'] != 'unit_e':
line = fd.readline().strip() # metric type
line = fd.readline().lstrip(' #\t').rstrip()
num_unconstrained_params = len(line.split(','))
if chain == 0: # can't allocate w/o num params
if self.metric_type == 'diag_e':
self._metric = np.empty(
(self.chains, num_unconstrained_params),
dtype=float,
)
else:
self._metric = np.empty(
(
self.chains,
num_unconstrained_params,
num_unconstrained_params,
),
dtype=float,
)
if line:
if self.metric_type == 'diag_e':
xs = line.split(',')
self._metric[chain, :] = [float(x) for x in xs]
else:
xs = line.strip().split(',')
self._metric[chain, 0, :] = [
float(x) for x in xs
]
for i in range(1, num_unconstrained_params):
line = fd.readline().lstrip(' #\t').rstrip()
xs = line.split(',')
self._metric[chain, i, :] = [
float(x) for x in xs
]
else: # unit_e changed in 2.34 to have an extra line
pos = fd.tell()
line = fd.readline().strip()
if not line.startswith('#'):
fd.seek(pos)
# process draws
for i in range(sampling_iter_start, num_draws):
line = fd.readline().strip()
xs = line.split(',')
self._draws[i, chain, :] = [float(x) for x in xs]
assert self._draws is not None
def summary(
self,
percentiles: Sequence[int] = (5, 50, 95),
sig_figs: int = 6,
) -> pd.DataFrame:
"""
Run cmdstan/bin/stansummary over all output CSV files, assemble
summary into DataFrame object. The first row contains statistics
for the total joint log probability `lp__`, but is omitted when the
Stan model has no parameters. The remaining rows contain summary
statistics for all parameters, transformed parameters, and generated
quantities variables, in program declaration order.
:param percentiles: Ordered non-empty sequence of percentiles to report.
Must be integers from (1, 99), inclusive. Defaults to
``(5, 50, 95)``
:param sig_figs: Number of significant figures to report.
Must be an integer between 1 and 18. If unspecified, the default
precision for the system file I/O is used; the usual value is 6.
If precision above 6 is requested, sample must have been produced
by CmdStan version 2.25 or later and sampler output precision
must equal to or greater than the requested summary precision.
:return: pandas.DataFrame
"""
if len(percentiles) == 0:
raise ValueError(
'Invalid percentiles argument, must be ordered'
' non-empty list from (1, 99), inclusive.'
)
cur_pct = 0
for pct in percentiles:
if pct > 99 or not pct > cur_pct:
raise ValueError(
'Invalid percentiles spec, must be ordered'
' non-empty list from (1, 99), inclusive.'
)
cur_pct = pct
percentiles_str = (
f"--percentiles= {','.join(str(x) for x in percentiles)}"
)
if not isinstance(sig_figs, int) or sig_figs < 1 or sig_figs > 18:
raise ValueError(
'Keyword "sig_figs" must be an integer between 1 and 18,'
' found {}'.format(sig_figs)
)
csv_sig_figs = self._sig_figs or 6
if sig_figs > csv_sig_figs:
get_logger().warning(
'Requesting %d significant digits of output, but CSV files'
' only have %d digits of precision.',
sig_figs,
csv_sig_figs,
)
sig_figs_str = f'--sig_figs={sig_figs}'
cmd_path = os.path.join(
cmdstan_path(), 'bin', 'stansummary' + EXTENSION
)
tmp_csv_file = 'stansummary-{}-'.format(self.runset._args.model_name)
tmp_csv_path = create_named_text_file(
dir=_TMPDIR, prefix=tmp_csv_file, suffix='.csv', name_only=True
)
csv_str = '--csv_filename={}'.format(tmp_csv_path)
# TODO: remove at some future release
if cmdstan_version_before(2, 24):
csv_str = '--csv_file={}'.format(tmp_csv_path)
cmd = [
cmd_path,
percentiles_str,
sig_figs_str,
csv_str,
] + self.runset.csv_files
do_command(cmd, fd_out=None)
with open(tmp_csv_path, 'rb') as fd:
summary_data = pd.read_csv(
fd,
delimiter=',',
header=0,
index_col=0,
comment='#',
float_precision='high',
)
mask = (
[not x.endswith('__') for x in summary_data.index]
if self._is_fixed_param
else [
x == 'lp__' or not x.endswith('__') for x in summary_data.index
]
)
summary_data.index.name = None
return summary_data[mask]
def diagnose(self) -> Optional[str]:
"""
Run cmdstan/bin/diagnose over all output CSV files,
return console output.
The diagnose utility reads the outputs of all chains
and checks for the following potential problems:
+ Transitions that hit the maximum treedepth
+ Divergent transitions
+ Low E-BFMI values (sampler transitions HMC potential energy)
+ Low effective sample sizes
+ High R-hat values
"""
cmd_path = os.path.join(cmdstan_path(), 'bin', 'diagnose' + EXTENSION)
cmd = [cmd_path] + self.runset.csv_files
result = StringIO()
do_command(cmd=cmd, fd_out=result)
return result.getvalue()
def draws_pd(
self,
vars: Union[List[str], str, None] = None,
inc_warmup: bool = False,
) -> pd.DataFrame:
"""
Returns the sample draws as a pandas DataFrame.
Flattens all chains into single column. Container variables
(array, vector, matrix) will span multiple columns, one column
per element. E.g. variable 'matrix[2,2] foo' spans 4 columns:
'foo[1,1], ... foo[2,2]'.
:param vars: optional list of variable names.
:param inc_warmup: When ``True`` and the warmup draws are present in
the output, i.e., the sampler was run with ``save_warmup=True``,
then the warmup draws are included. Default value is ``False``.
See Also
--------
CmdStanMCMC.draws
CmdStanMCMC.draws_xr
CmdStanGQ.draws_pd
"""
if vars is not None:
if isinstance(vars, str):
vars_list = [vars]
else:
vars_list = vars
if inc_warmup and not self._save_warmup:
get_logger().warning(
'Draws from warmup iterations not available,'
' must run sampler with "save_warmup=True".'
)
self._assemble_draws()
cols = []
if vars is not None:
for var in dict.fromkeys(vars_list):
if var in self._metadata.method_vars:
cols.append(var)
elif var in self._metadata.stan_vars:
info = self._metadata.stan_vars[var]
cols.extend(
self.column_names[info.start_idx : info.end_idx]
)
elif var in ['chain__', 'iter__', 'draw__']:
cols.append(var)
else:
raise ValueError(f'Unknown variable: {var}')
else:
cols = ['chain__', 'iter__', 'draw__'] + list(self.column_names)
draws = self.draws(inc_warmup=inc_warmup)
# add long-form columns for chain, iteration, draw
n_draws, n_chains, _ = draws.shape
chains_col = (
np.repeat(np.arange(1, n_chains + 1), n_draws)
.reshape(1, n_chains, n_draws)
.T
)
iter_col = (
np.tile(np.arange(1, n_draws + 1), n_chains)
.reshape(1, n_chains, n_draws)
.T
)
draw_col = (
np.arange(1, (n_draws * n_chains) + 1)
.reshape(1, n_chains, n_draws)
.T
)
draws = np.concatenate([chains_col, iter_col, draw_col, draws], axis=2)
return pd.DataFrame(
data=flatten_chains(draws),
columns=['chain__', 'iter__', 'draw__'] + list(self.column_names),
)[cols]
def draws_xr(
self, vars: Union[str, List[str], None] = None, inc_warmup: bool = False
) -> "xr.Dataset":
"""
Returns the sampler draws as a xarray Dataset.
:param vars: optional list of variable names.
:param inc_warmup: When ``True`` and the warmup draws are present in
the output, i.e., the sampler was run with ``save_warmup=True``,
then the warmup draws are included. Default value is ``False``.
See Also
--------
CmdStanMCMC.draws
CmdStanMCMC.draws_pd
CmdStanGQ.draws_xr
"""
if not XARRAY_INSTALLED:
raise RuntimeError(
'Package "xarray" is not installed, cannot produce draws array.'
)
if inc_warmup and not self._save_warmup:
get_logger().warning(
"Draws from warmup iterations not available,"
' must run sampler with "save_warmup=True".'
)
if vars is None:
vars_list = list(self._metadata.stan_vars.keys())
elif isinstance(vars, str):
vars_list = [vars]
else:
vars_list = vars
self._assemble_draws()
num_draws = self.num_draws_sampling
meta = self._metadata.cmdstan_config
attrs: MutableMapping[Hashable, Any] = {
"stan_version": f"{meta['stan_version_major']}."
f"{meta['stan_version_minor']}.{meta['stan_version_patch']}",
"model": meta["model"],
"num_draws_sampling": num_draws,
}
if inc_warmup and self._save_warmup:
num_draws += self.num_draws_warmup
attrs["num_draws_warmup"] = self.num_draws_warmup
data: MutableMapping[Hashable, Any] = {}
coordinates: MutableMapping[Hashable, Any] = {
"chain": self.chain_ids,
"draw": np.arange(num_draws),
}
for var in vars_list:
build_xarray_data(
data,
self._metadata.stan_vars[var],
self.draws(inc_warmup=inc_warmup),
)
return xr.Dataset(data, coords=coordinates, attrs=attrs).transpose(
'chain', 'draw', ...
)
def stan_variable(
self,
var: str,
inc_warmup: bool = False,
) -> np.ndarray:
"""
Return a numpy.ndarray which contains the set of draws
for the named Stan program variable. Flattens the chains,
leaving the draws in chain order. The first array dimension,
corresponds to number of draws or post-warmup draws in the sample,
per argument ``inc_warmup``. The remaining dimensions correspond to
the shape of the Stan program variable.
Underlyingly draws are in chain order, i.e., for a sample with
N chains of M draws each, the first M array elements are from chain 1,
the next M are from chain 2, and the last M elements are from chain N.
* If the variable is a scalar variable, the return array has shape
( draws * chains, 1).
* If the variable is a vector, the return array has shape
( draws * chains, len(vector))
* If the variable is a matrix, the return array has shape
( draws * chains, size(dim 1), size(dim 2) )
* If the variable is an array with N dimensions, the return array
has shape ( draws * chains, size(dim 1), ..., size(dim N))
For example, if the Stan program variable ``theta`` is a 3x3 matrix,
and the sample consists of 4 chains with 1000 post-warmup draws,
this function will return a numpy.ndarray with shape (4000,3,3).
This functionaltiy is also available via a shortcut using ``.`` -
writing ``fit.a`` is a synonym for ``fit.stan_variable("a")``
:param var: variable name
:param inc_warmup: When ``True`` and the warmup draws are present in
the output, i.e., the sampler was run with ``save_warmup=True``,
then the warmup draws are included. Default value is ``False``.
See Also
--------
CmdStanMCMC.stan_variables
CmdStanMLE.stan_variable
CmdStanPathfinder.stan_variable
CmdStanVB.stan_variable
CmdStanGQ.stan_variable
CmdStanLaplace.stan_variable
"""
try:
draws = self.draws(inc_warmup=inc_warmup, concat_chains=True)
out: np.ndarray = self._metadata.stan_vars[var].extract_reshape(
draws
)
return out
except KeyError:
# pylint: disable=raise-missing-from
raise ValueError(
f'Unknown variable name: {var}\n'
'Available variables are '
+ ", ".join(self._metadata.stan_vars.keys())
)
def stan_variables(self) -> Dict[str, np.ndarray]:
"""
Return a dictionary mapping Stan program variables names
to the corresponding numpy.ndarray containing the inferred values.
See Also
--------
CmdStanMCMC.stan_variable
CmdStanMLE.stan_variables
CmdStanPathfinder.stan_variables
CmdStanVB.stan_variables
CmdStanGQ.stan_variables
CmdStanLaplace.stan_variables
"""
result = {}
for name in self._metadata.stan_vars:
result[name] = self.stan_variable(name)
return result
def method_variables(self) -> Dict[str, np.ndarray]:
"""
Returns a dictionary of all sampler variables, i.e., all
output column names ending in `__`. Assumes that all variables
are scalar variables where column name is variable name.
Maps each column name to a numpy.ndarray (draws x chains x 1)
containing per-draw diagnostic values.
"""
self._assemble_draws()
return {
name: var.extract_reshape(self._draws)
for name, var in self._metadata.method_vars.items()
}
def save_csvfiles(self, dir: Optional[str] = None) -> None:
"""
Move output CSV files to specified directory. If files were
written to the temporary session directory, clean filename.
E.g., save 'bernoulli-201912081451-1-5nm6as7u.csv' as
'bernoulli-201912081451-1.csv'.
:param dir: directory path
See Also
--------
stanfit.RunSet.save_csvfiles
cmdstanpy.from_csv
"""
self.runset.save_csvfiles(dir)

View File

@ -0,0 +1,53 @@
"""Container for metadata parsed from the output of a CmdStan run"""
import copy
from typing import Any, Dict
import stanio
class InferenceMetadata:
"""
CmdStan configuration and contents of output file parsed out of
the Stan CSV file header comments and column headers.
Assumes valid CSV files.
"""
def __init__(self, config: Dict[str, Any]) -> None:
"""Initialize object from CSV headers"""
self._cmdstan_config = config
vars = stanio.parse_header(config['raw_header'])
self._method_vars = {
k: v for (k, v) in vars.items() if k.endswith('__')
}
self._stan_vars = {
k: v for (k, v) in vars.items() if not k.endswith('__')
}
def __repr__(self) -> str:
return 'Metadata:\n{}\n'.format(self._cmdstan_config)
@property
def cmdstan_config(self) -> Dict[str, Any]:
"""
Returns a dictionary containing a set of name, value pairs
parsed out of the Stan CSV file header. These include the
command configuration and the CSV file header row information.
Uses deepcopy for immutability.
"""
return copy.deepcopy(self._cmdstan_config)
@property
def method_vars(self) -> Dict[str, stanio.Variable]:
"""
Method variable names always end in `__`, e.g. `lp__`.
"""
return self._method_vars
@property
def stan_vars(self) -> Dict[str, stanio.Variable]:
"""
These are the user-defined variables in the Stan program.
"""
return self._stan_vars

View File

@ -0,0 +1,284 @@
"""Container for the result of running optimization"""
from collections import OrderedDict
from typing import Dict, Optional, Tuple, Union
import numpy as np
import pandas as pd
from cmdstanpy.cmdstan_args import Method, OptimizeArgs
from cmdstanpy.utils import get_logger, scan_optimize_csv
from .metadata import InferenceMetadata
from .runset import RunSet
class CmdStanMLE:
"""
Container for outputs from CmdStan optimization.
Created by :meth:`CmdStanModel.optimize`.
"""
def __init__(self, runset: RunSet) -> None:
"""Initialize object."""
if not runset.method == Method.OPTIMIZE:
raise ValueError(
'Wrong runset method, expecting optimize runset, '
'found method {}'.format(runset.method)
)
self.runset = runset
# info from runset to be exposed
self.converged = runset._check_retcodes()
optimize_args = self.runset._args.method_args
assert isinstance(
optimize_args, OptimizeArgs
) # make the typechecker happy
self._save_iterations: bool = optimize_args.save_iterations
self._set_mle_attrs(runset.csv_files[0])
def __repr__(self) -> str:
repr = 'CmdStanMLE: model={}{}'.format(
self.runset.model, self.runset._args.method_args.compose(0, cmd=[])
)
repr = '{}\n csv_file:\n\t{}\n output_file:\n\t{}'.format(
repr,
'\n\t'.join(self.runset.csv_files),
'\n\t'.join(self.runset.stdout_files),
)
if not self.converged:
repr = '{}\n Warning: invalid estimate, '.format(repr)
repr = '{} optimization failed to converge.'.format(repr)
return repr
def __getattr__(self, attr: str) -> Union[np.ndarray, float]:
"""Synonymous with ``fit.stan_variable(attr)"""
if attr.startswith("_"):
raise AttributeError(f"Unknown variable name {attr}")
try:
return self.stan_variable(attr)
except ValueError as e:
# pylint: disable=raise-missing-from
raise AttributeError(*e.args)
def _set_mle_attrs(self, sample_csv_0: str) -> None:
meta = scan_optimize_csv(sample_csv_0, self._save_iterations)
self._metadata = InferenceMetadata(meta)
self._column_names: Tuple[str, ...] = meta['column_names']
self._mle: np.ndarray = meta['mle']
if self._save_iterations:
self._all_iters: np.ndarray = meta['all_iters']
@property
def column_names(self) -> Tuple[str, ...]:
"""
Names of estimated quantities, includes joint log probability,
and all parameters, transformed parameters, and generated quantities.
"""
return self._column_names
@property
def metadata(self) -> InferenceMetadata:
"""
Returns object which contains CmdStan configuration as well as
information about the names and structure of the inference method
and model output variables.
"""
return self._metadata
@property
def optimized_params_np(self) -> np.ndarray:
"""
Returns all final estimates from the optimizer as a numpy.ndarray
which contains all optimizer outputs, i.e., the value for `lp__`
as well as all Stan program variables.
"""
if not self.converged:
get_logger().warning(
'Invalid estimate, optimization failed to converge.'
)
return self._mle
@property
def optimized_iterations_np(self) -> Optional[np.ndarray]:
"""
Returns all saved iterations from the optimizer and final estimate
as a numpy.ndarray which contains all optimizer outputs, i.e.,
the value for `lp__` as well as all Stan program variables.
"""
if not self._save_iterations:
get_logger().warning(
'Intermediate iterations not saved to CSV output file. '
'Rerun the optimize method with "save_iterations=True".'
)
return None
if not self.converged:
get_logger().warning(
'Invalid estimate, optimization failed to converge.'
)
return self._all_iters
@property
def optimized_params_pd(self) -> pd.DataFrame:
"""
Returns all final estimates from the optimizer as a pandas.DataFrame
which contains all optimizer outputs, i.e., the value for `lp__`
as well as all Stan program variables.
"""
if not self.runset._check_retcodes():
get_logger().warning(
'Invalid estimate, optimization failed to converge.'
)
return pd.DataFrame([self._mle], columns=self.column_names)
@property
def optimized_iterations_pd(self) -> Optional[pd.DataFrame]:
"""
Returns all saved iterations from the optimizer and final estimate
as a pandas.DataFrame which contains all optimizer outputs, i.e.,
the value for `lp__` as well as all Stan program variables.
"""
if not self._save_iterations:
get_logger().warning(
'Intermediate iterations not saved to CSV output file. '
'Rerun the optimize method with "save_iterations=True".'
)
return None
if not self.converged:
get_logger().warning(
'Invalid estimate, optimization failed to converge.'
)
return pd.DataFrame(self._all_iters, columns=self.column_names)
@property
def optimized_params_dict(self) -> Dict[str, np.float64]:
"""
Returns all estimates from the optimizer, including `lp__` as a
Python Dict. Only returns estimate from final iteration.
"""
if not self.runset._check_retcodes():
get_logger().warning(
'Invalid estimate, optimization failed to converge.'
)
return OrderedDict(zip(self.column_names, self._mle))
def stan_variable(
self,
var: str,
*,
inc_iterations: bool = False,
warn: bool = True,
) -> Union[np.ndarray, float]:
"""
Return a numpy.ndarray which contains the estimates for the
for the named Stan program variable where the dimensions of the
numpy.ndarray match the shape of the Stan program variable.
This functionaltiy is also available via a shortcut using ``.`` -
writing ``fit.a`` is a synonym for ``fit.stan_variable("a")``
:param var: variable name
:param inc_iterations: When ``True`` and the intermediate estimates
are included in the output, i.e., the optimizer was run with
``save_iterations=True``, then intermediate estimates are included.
Default value is ``False``.
See Also
--------
CmdStanMLE.stan_variables
CmdStanMCMC.stan_variable
CmdStanPathfinder.stan_variable
CmdStanVB.stan_variable
CmdStanGQ.stan_variable
CmdStanLaplace.stan_variable
"""
if var not in self._metadata.stan_vars:
raise ValueError(
f'Unknown variable name: {var}\n'
'Available variables are ' + ", ".join(self._metadata.stan_vars)
)
if warn and inc_iterations and not self._save_iterations:
get_logger().warning(
'Intermediate iterations not saved to CSV output file. '
'Rerun the optimize method with "save_iterations=True".'
)
if warn and not self.runset._check_retcodes():
get_logger().warning(
'Invalid estimate, optimization failed to converge.'
)
if inc_iterations and self._save_iterations:
data = self._all_iters
else:
data = self._mle
try:
out: np.ndarray = self._metadata.stan_vars[var].extract_reshape(
data
)
# TODO(2.0) remove
if out.shape == () or out.shape == (1,):
get_logger().warning(
"The default behavior of CmdStanMLE.stan_variable() "
"will change in a future release to always return a "
"numpy.ndarray, even for scalar variables."
)
return out.item() # type: ignore
return out
except KeyError:
# pylint: disable=raise-missing-from
raise ValueError(
f'Unknown variable name: {var}\n'
'Available variables are '
+ ", ".join(self._metadata.stan_vars.keys())
)
def stan_variables(
self, inc_iterations: bool = False
) -> Dict[str, Union[np.ndarray, float]]:
"""
Return a dictionary mapping Stan program variables names
to the corresponding numpy.ndarray containing the inferred values.
:param inc_iterations: When ``True`` and the intermediate estimates
are included in the output, i.e., the optimizer was run with
``save_iterations=True``, then intermediate estimates are included.
Default value is ``False``.
See Also
--------
CmdStanMLE.stan_variable
CmdStanMCMC.stan_variables
CmdStanPathfinder.stan_variables
CmdStanVB.stan_variables
CmdStanGQ.stan_variables
CmdStanLaplace.stan_variables
"""
if not self.runset._check_retcodes():
get_logger().warning(
'Invalid estimate, optimization failed to converge.'
)
result = {}
for name in self._metadata.stan_vars:
result[name] = self.stan_variable(
name, inc_iterations=inc_iterations, warn=False
)
return result
def save_csvfiles(self, dir: Optional[str] = None) -> None:
"""
Move output CSV files to specified directory. If files were
written to the temporary session directory, clean filename.
E.g., save 'bernoulli-201912081451-1-5nm6as7u.csv' as
'bernoulli-201912081451-1.csv'.
:param dir: directory path
See Also
--------
stanfit.RunSet.save_csvfiles
cmdstanpy.from_csv
"""
self.runset.save_csvfiles(dir)

View File

@ -0,0 +1,237 @@
"""
Container for the result of running Pathfinder.
"""
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from cmdstanpy.cmdstan_args import Method
from cmdstanpy.stanfit.metadata import InferenceMetadata
from cmdstanpy.stanfit.runset import RunSet
from cmdstanpy.utils.stancsv import scan_generic_csv
class CmdStanPathfinder:
"""
Container for outputs from the Pathfinder algorithm.
Created by :meth:`CmdStanModel.pathfinder()`.
"""
def __init__(self, runset: RunSet):
"""Initialize object."""
if not runset.method == Method.PATHFINDER:
raise ValueError(
'Wrong runset method, expecting Pathfinder runset, '
'found method {}'.format(runset.method)
)
self._runset = runset
self._draws: np.ndarray = np.array(())
config = scan_generic_csv(runset.csv_files[0])
self._metadata = InferenceMetadata(config)
def create_inits(
self, seed: Optional[int] = None, chains: int = 4
) -> Union[List[Dict[str, np.ndarray]], Dict[str, np.ndarray]]:
"""
Create initial values for the parameters of the model
by randomly selecting draws from the Pathfinder approximation.
:param seed: Used for random selection, defaults to None
:param chains: Number of initial values to return, defaults to 4
:return: The initial values for the parameters of the model.
If ``chains`` is 1, a dictionary is returned, otherwise a list
of dictionaries is returned, in the format expected for the
``inits`` argument. of :meth:`CmdStanModel.sample`.
"""
self._assemble_draws()
rng = np.random.default_rng(seed)
idxs = rng.choice(self._draws.shape[0], size=chains, replace=False)
if chains == 1:
draw = self._draws[idxs[0]]
return {
name: var.extract_reshape(draw)
for name, var in self._metadata.stan_vars.items()
}
else:
return [
{
name: var.extract_reshape(self._draws[idx])
for name, var in self._metadata.stan_vars.items()
}
for idx in idxs
]
def __repr__(self) -> str:
rep = 'CmdStanPathfinder: model={}{}'.format(
self._runset.model,
self._runset._args.method_args.compose(0, cmd=[]),
)
rep = '{}\n csv_files:\n\t{}\n output_files:\n\t{}'.format(
rep,
'\n\t'.join(self._runset.csv_files),
'\n\t'.join(self._runset.stdout_files),
)
return rep
# below this is identical to same functions in Laplace
def _assemble_draws(self) -> None:
if self._draws.shape != (0,):
return
with open(self._runset.csv_files[0], 'r') as fd:
while (fd.readline()).startswith("#"):
pass
self._draws = np.loadtxt(
fd,
dtype=float,
ndmin=2,
delimiter=',',
comments="#",
)
def stan_variable(self, var: str) -> np.ndarray:
"""
Return a numpy.ndarray which contains the estimates for the
for the named Stan program variable where the dimensions of the
numpy.ndarray match the shape of the Stan program variable.
This functionaltiy is also available via a shortcut using ``.`` -
writing ``fit.a`` is a synonym for ``fit.stan_variable("a")``
:param var: variable name
See Also
--------
CmdStanPathfinder.stan_variables
CmdStanMLE.stan_variable
CmdStanMCMC.stan_variable
CmdStanVB.stan_variable
CmdStanGQ.stan_variable
CmdStanLaplace.stan_variable
"""
self._assemble_draws()
try:
out: np.ndarray = self._metadata.stan_vars[var].extract_reshape(
self._draws
)
return out
except KeyError:
# pylint: disable=raise-missing-from
raise ValueError(
f'Unknown variable name: {var}\n'
'Available variables are '
+ ", ".join(self._metadata.stan_vars.keys())
)
def stan_variables(self) -> Dict[str, np.ndarray]:
"""
Return a dictionary mapping Stan program variables names
to the corresponding numpy.ndarray containing the inferred values.
See Also
--------
CmdStanPathfinder.stan_variable
CmdStanMCMC.stan_variables
CmdStanMLE.stan_variables
CmdStanVB.stan_variables
CmdStanGQ.stan_variables
CmdStanLaplace.stan_variables
"""
result = {}
for name in self._metadata.stan_vars:
result[name] = self.stan_variable(name)
return result
def method_variables(self) -> Dict[str, np.ndarray]:
"""
Returns a dictionary of all sampler variables, i.e., all
output column names ending in `__`. Assumes that all variables
are scalar variables where column name is variable name.
Maps each column name to a numpy.ndarray (draws x chains x 1)
containing per-draw diagnostic values.
"""
self._assemble_draws()
return {
name: var.extract_reshape(self._draws)
for name, var in self._metadata.method_vars.items()
}
def draws(self) -> np.ndarray:
"""
Return a numpy.ndarray containing the draws from the
approximate posterior distribution. This is a 2-D array
of shape (draws, parameters).
"""
self._assemble_draws()
return self._draws
def __getattr__(self, attr: str) -> np.ndarray:
"""Synonymous with ``fit.stan_variable(attr)"""
if attr.startswith("_"):
raise AttributeError(f"Unknown variable name {attr}")
try:
return self.stan_variable(attr)
except ValueError as e:
# pylint: disable=raise-missing-from
raise AttributeError(*e.args)
def __getstate__(self) -> dict:
# This function returns the mapping of objects to serialize with pickle.
# See https://docs.python.org/3/library/pickle.html#object.__getstate__
# for details. We call _assemble_draws to ensure posterior samples have
# been loaded prior to serialization.
self._assemble_draws()
return self.__dict__
@property
def metadata(self) -> InferenceMetadata:
"""
Returns object which contains CmdStan configuration as well as
information about the names and structure of the inference method
and model output variables.
"""
return self._metadata
@property
def column_names(self) -> Tuple[str, ...]:
"""
Names of all outputs from the sampler, comprising sampler parameters
and all components of all model parameters, transformed parameters,
and quantities of interest. Corresponds to Stan CSV file header row,
with names munged to array notation, e.g. `beta[1]` not `beta.1`.
"""
return self._metadata.cmdstan_config['column_names'] # type: ignore
@property
def is_resampled(self) -> bool:
"""
Returns True if the draws were resampled from several Pathfinder
approximations, False otherwise.
"""
return ( # type: ignore
self._metadata.cmdstan_config.get("num_paths", 4) > 1
and self._metadata.cmdstan_config.get('psis_resample', 1)
in (1, 'true')
and self._metadata.cmdstan_config.get('calculate_lp', 1)
in (1, 'true')
)
def save_csvfiles(self, dir: Optional[str] = None) -> None:
"""
Move output CSV files to specified directory. If files were
written to the temporary session directory, clean filename.
E.g., save 'bernoulli-201912081451-1-5nm6as7u.csv' as
'bernoulli-201912081451-1.csv'.
:param dir: directory path
See Also
--------
stanfit.RunSet.save_csvfiles
cmdstanpy.from_csv
"""
self._runset.save_csvfiles(dir)

View File

@ -0,0 +1,307 @@
"""
Container for the information used in a generic CmdStan run,
such as file locations
"""
import os
import re
import shutil
import tempfile
from datetime import datetime
from time import time
from typing import List, Optional
from cmdstanpy import _TMPDIR
from cmdstanpy.cmdstan_args import CmdStanArgs, Method
from cmdstanpy.utils import get_logger
class RunSet:
"""
Encapsulates the configuration and results of a call to any CmdStan
inference method. Records the method return code and locations of
all console, error, and output files.
RunSet objects are instantiated by the CmdStanModel class inference methods
which validate all inputs, therefore "__init__" method skips input checks.
"""
def __init__(
self,
args: CmdStanArgs,
chains: int = 1,
*,
chain_ids: Optional[List[int]] = None,
time_fmt: str = "%Y%m%d%H%M%S",
one_process_per_chain: bool = True,
) -> None:
"""Initialize object (no input arg checks)."""
self._args = args
self._chains = chains
self._one_process_per_chain = one_process_per_chain
if one_process_per_chain:
self._num_procs = chains
else:
self._num_procs = 1
self._retcodes = [-1 for _ in range(self._num_procs)]
self._timeout_flags = [False for _ in range(self._num_procs)]
if chain_ids is None:
chain_ids = [i + 1 for i in range(chains)]
self._chain_ids = chain_ids
if args.output_dir is not None:
self._output_dir = args.output_dir
else:
# make a per-run subdirectory of our master temp directory
self._output_dir = tempfile.mkdtemp(
prefix=args.model_name, dir=_TMPDIR
)
# output files prefix: ``<model_name>-<YYYYMMDDHHMM>_<chain_id>``
self._base_outfile = (
f'{args.model_name}-{datetime.now().strftime(time_fmt)}'
)
# per-process outputs
self._stdout_files = [''] * self._num_procs
self._profile_files = [''] * self._num_procs # optional
if one_process_per_chain:
for i in range(chains):
self._stdout_files[i] = self.file_path("-stdout.txt", id=i)
if args.save_profile:
self._profile_files[i] = self.file_path(
".csv", extra="-profile", id=chain_ids[i]
)
else:
self._stdout_files[0] = self.file_path("-stdout.txt")
if args.save_profile:
self._profile_files[0] = self.file_path(
".csv", extra="-profile"
)
# per-chain output files
self._csv_files: List[str] = [''] * chains
self._diagnostic_files = [''] * chains # optional
if chains == 1:
self._csv_files[0] = self.file_path(".csv")
if args.save_latent_dynamics:
self._diagnostic_files[0] = self.file_path(
".csv", extra="-diagnostic"
)
else:
for i in range(chains):
self._csv_files[i] = self.file_path(".csv", id=chain_ids[i])
if args.save_latent_dynamics:
self._diagnostic_files[i] = self.file_path(
".csv", extra="-diagnostic", id=chain_ids[i]
)
def __repr__(self) -> str:
repr = 'RunSet: chains={}, chain_ids={}, num_processes={}'.format(
self._chains, self._chain_ids, self._num_procs
)
repr = '{}\n cmd (chain 1):\n\t{}'.format(repr, self.cmd(0))
repr = '{}\n retcodes={}'.format(repr, self._retcodes)
repr = f'{repr}\n per-chain output files (showing chain 1 only):'
repr = '{}\n csv_file:\n\t{}'.format(repr, self._csv_files[0])
if self._args.save_latent_dynamics:
repr = '{}\n diagnostics_file:\n\t{}'.format(
repr, self._diagnostic_files[0]
)
if self._args.save_profile:
repr = '{}\n profile_file:\n\t{}'.format(
repr, self._profile_files[0]
)
repr = '{}\n console_msgs (if any):\n\t{}'.format(
repr, self._stdout_files[0]
)
return repr
@property
def model(self) -> str:
"""Stan model name."""
return self._args.model_name
@property
def method(self) -> Method:
"""CmdStan method used to generate this fit."""
return self._args.method
@property
def num_procs(self) -> int:
"""Number of processes run."""
return self._num_procs
@property
def one_process_per_chain(self) -> bool:
"""
When True, for each chain, call CmdStan in its own subprocess.
When False, use CmdStan's `num_chains` arg to run parallel chains.
Always True if CmdStan < 2.28.
For CmdStan 2.28 and up, `sample` method determines value.
"""
return self._one_process_per_chain
@property
def chains(self) -> int:
"""Number of chains."""
return self._chains
@property
def chain_ids(self) -> List[int]:
"""Chain ids."""
return self._chain_ids
def cmd(self, idx: int) -> List[str]:
"""
Assemble CmdStan invocation.
When running parallel chains from single process (2.28 and up),
specify CmdStan arg `num_chains` and leave chain idx off CSV files.
"""
if self._one_process_per_chain:
return self._args.compose_command(
idx,
csv_file=self.csv_files[idx],
diagnostic_file=self.diagnostic_files[idx]
if self._args.save_latent_dynamics
else None,
profile_file=self.profile_files[idx]
if self._args.save_profile
else None,
)
else:
return self._args.compose_command(
idx,
csv_file=self.file_path('.csv'),
diagnostic_file=self.file_path(".csv", extra="-diagnostic")
if self._args.save_latent_dynamics
else None,
profile_file=self.file_path(".csv", extra="-profile")
if self._args.save_profile
else None,
)
@property
def csv_files(self) -> List[str]:
"""List of paths to CmdStan output files."""
return self._csv_files
@property
def stdout_files(self) -> List[str]:
"""
List of paths to transcript of CmdStan messages sent to the console.
Transcripts include config information, progress, and error messages.
"""
return self._stdout_files
def _check_retcodes(self) -> bool:
"""Returns ``True`` when all chains have retcode 0."""
for code in self._retcodes:
if code != 0:
return False
return True
@property
def diagnostic_files(self) -> List[str]:
"""List of paths to CmdStan hamiltonian diagnostic files."""
return self._diagnostic_files
@property
def profile_files(self) -> List[str]:
"""List of paths to CmdStan profiler files."""
return self._profile_files
# pylint: disable=invalid-name
def file_path(
self, suffix: str, *, extra: str = "", id: Optional[int] = None
) -> str:
if id is not None:
suffix = f"_{id}{suffix}"
file = os.path.join(
self._output_dir, f"{self._base_outfile}{extra}{suffix}"
)
return file
def _retcode(self, idx: int) -> int:
"""Get retcode for process[idx]."""
return self._retcodes[idx]
def _set_retcode(self, idx: int, val: int) -> None:
"""Set retcode at process[idx] to val."""
self._retcodes[idx] = val
def _set_timeout_flag(self, idx: int, val: bool) -> None:
"""Set timeout_flag at process[idx] to val."""
self._timeout_flags[idx] = val
def get_err_msgs(self) -> str:
"""Checks console messages for each CmdStan run."""
msgs = []
for i in range(self._num_procs):
if (
os.path.exists(self._stdout_files[i])
and os.stat(self._stdout_files[i]).st_size > 0
):
if self._args.method == Method.OPTIMIZE:
msgs.append('console log output:\n')
with open(self._stdout_files[0], 'r') as fd:
msgs.append(fd.read())
else:
with open(self._stdout_files[i], 'r') as fd:
contents = fd.read()
# pattern matches initial "Exception" or "Error" msg
pat = re.compile(r'^E[rx].*$', re.M)
errors = re.findall(pat, contents)
if len(errors) > 0:
msgs.append('\n\t'.join(errors))
return '\n'.join(msgs)
def save_csvfiles(self, dir: Optional[str] = None) -> None:
"""
Moves CSV files to specified directory.
:param dir: directory path
See Also
--------
cmdstanpy.from_csv
"""
if dir is None:
dir = os.path.realpath('.')
test_path = os.path.join(dir, str(time()))
try:
os.makedirs(dir, exist_ok=True)
with open(test_path, 'w'):
pass
os.remove(test_path) # cleanup
except (IOError, OSError, PermissionError) as exc:
raise RuntimeError('Cannot save to path: {}'.format(dir)) from exc
for i in range(self.chains):
if not os.path.exists(self._csv_files[i]):
raise ValueError(
'Cannot access CSV file {}'.format(self._csv_files[i])
)
to_path = os.path.join(dir, os.path.basename(self._csv_files[i]))
if os.path.exists(to_path):
raise ValueError(
'File exists, not overwriting: {}'.format(to_path)
)
try:
get_logger().debug(
'saving tmpfile: "%s" as: "%s"', self._csv_files[i], to_path
)
shutil.move(self._csv_files[i], to_path)
self._csv_files[i] = to_path
except (IOError, OSError, PermissionError) as e:
raise ValueError(
'Cannot save to file: {}'.format(to_path)
) from e
def raise_for_timeouts(self) -> None:
if any(self._timeout_flags):
raise TimeoutError(
f"{sum(self._timeout_flags)} of {self.num_procs} processes "
"timed out"
)

View File

@ -0,0 +1,240 @@
"""Container for the results of running autodiff variational inference"""
from collections import OrderedDict
from typing import Dict, Optional, Tuple, Union
import numpy as np
import pandas as pd
from cmdstanpy.cmdstan_args import Method
from cmdstanpy.utils import scan_variational_csv
from cmdstanpy.utils.logging import get_logger
from .metadata import InferenceMetadata
from .runset import RunSet
class CmdStanVB:
"""
Container for outputs from CmdStan variational run.
Created by :meth:`CmdStanModel.variational`.
"""
def __init__(self, runset: RunSet) -> None:
"""Initialize object."""
if not runset.method == Method.VARIATIONAL:
raise ValueError(
'Wrong runset method, expecting variational inference, '
'found method {}'.format(runset.method)
)
self.runset = runset
self._set_variational_attrs(runset.csv_files[0])
def __repr__(self) -> str:
repr = 'CmdStanVB: model={}{}'.format(
self.runset.model, self.runset._args.method_args.compose(0, cmd=[])
)
repr = '{}\n csv_file:\n\t{}\n output_file:\n\t{}'.format(
repr,
'\n\t'.join(self.runset.csv_files),
'\n\t'.join(self.runset.stdout_files),
)
# TODO - diagnostic, profiling files
return repr
def __getattr__(self, attr: str) -> Union[np.ndarray, float]:
"""Synonymous with ``fit.stan_variable(attr)"""
if attr.startswith("_"):
raise AttributeError(f"Unknown variable name {attr}")
try:
return self.stan_variable(attr)
except ValueError as e:
# pylint: disable=raise-missing-from
raise AttributeError(*e.args)
def _set_variational_attrs(self, sample_csv_0: str) -> None:
meta = scan_variational_csv(sample_csv_0)
self._metadata = InferenceMetadata(meta)
# these three assignments don't grant type information
self._column_names: Tuple[str, ...] = meta['column_names']
self._eta: float = meta['eta']
self._variational_mean: np.ndarray = meta['variational_mean']
self._variational_sample: np.ndarray = meta['variational_sample']
@property
def columns(self) -> int:
"""
Total number of information items returned by sampler.
Includes approximation information and names of model parameters
and computed quantities.
"""
return len(self._column_names)
@property
def column_names(self) -> Tuple[str, ...]:
"""
Names of information items returned by sampler for each draw.
Includes approximation information and names of model parameters
and computed quantities.
"""
return self._column_names
@property
def eta(self) -> float:
"""
Step size scaling parameter 'eta'
"""
return self._eta
@property
def variational_params_np(self) -> np.ndarray:
"""
Returns inferred parameter means as numpy array.
"""
return self._variational_mean
@property
def variational_params_pd(self) -> pd.DataFrame:
"""
Returns inferred parameter means as pandas DataFrame.
"""
return pd.DataFrame([self._variational_mean], columns=self.column_names)
@property
def variational_params_dict(self) -> Dict[str, np.ndarray]:
"""Returns inferred parameter means as Dict."""
return OrderedDict(zip(self.column_names, self._variational_mean))
@property
def metadata(self) -> InferenceMetadata:
"""
Returns object which contains CmdStan configuration as well as
information about the names and structure of the inference method
and model output variables.
"""
return self._metadata
def stan_variable(
self, var: str, *, mean: Optional[bool] = None
) -> Union[np.ndarray, float]:
"""
Return a numpy.ndarray which contains the estimates for the
for the named Stan program variable where the dimensions of the
numpy.ndarray match the shape of the Stan program variable, with
a leading axis added for the number of draws from the variational
approximation.
* If the variable is a scalar variable, the return array has shape
( draws, ).
* If the variable is a vector, the return array has shape
( draws, len(vector))
* If the variable is a matrix, the return array has shape
( draws, size(dim 1), size(dim 2) )
* If the variable is an array with N dimensions, the return array
has shape ( draws, size(dim 1), ..., size(dim N))
This functionaltiy is also available via a shortcut using ``.`` -
writing ``fit.a`` is a synonym for ``fit.stan_variable("a")``
:param var: variable name
:param mean: if True, return the variational mean. Otherwise,
return the variational sample. The default behavior will
change in a future release to return the variational sample.
See Also
--------
CmdStanVB.stan_variables
CmdStanMCMC.stan_variable
CmdStanMLE.stan_variable
CmdStanPathfinder.stan_variable
CmdStanGQ.stan_variable
CmdStanLaplace.stan_variable
"""
# TODO(2.0): remove None case, make default `False`
if mean is None:
get_logger().warning(
"The default behavior of CmdStanVB.stan_variable() "
"will change in a future release to return the "
"variational sample, rather than the mean.\n"
"To maintain the current behavior, pass the argument "
"mean=True"
)
mean = True
if mean:
draws = self._variational_mean
else:
draws = self._variational_sample
try:
out: np.ndarray = self._metadata.stan_vars[var].extract_reshape(
draws
)
# TODO(2.0): remove
if out.shape == () or out.shape == (1,):
if mean:
get_logger().warning(
"The default behavior of "
"CmdStanVB.stan_variable(mean=True) will change in a "
"future release to always return a numpy.ndarray, even "
"for scalar variables."
)
return out.item() # type: ignore
return out
except KeyError:
# pylint: disable=raise-missing-from
raise ValueError(
f'Unknown variable name: {var}\n'
'Available variables are '
+ ", ".join(self._metadata.stan_vars.keys())
)
def stan_variables(
self, *, mean: Optional[bool] = None
) -> Dict[str, Union[np.ndarray, float]]:
"""
Return a dictionary mapping Stan program variables names
to the corresponding numpy.ndarray containing the inferred values.
See Also
--------
CmdStanVB.stan_variable
CmdStanMCMC.stan_variables
CmdStanMLE.stan_variables
CmdStanGQ.stan_variables
CmdStanPathfinder.stan_variables
CmdStanLaplace.stan_variables
"""
result = {}
for name in self._metadata.stan_vars:
result[name] = self.stan_variable(name, mean=mean)
return result
@property
def variational_sample(self) -> np.ndarray:
"""Returns the set of approximate posterior output draws."""
return self._variational_sample
@property
def variational_sample_pd(self) -> pd.DataFrame:
"""
Returns the set of approximate posterior output draws as
a pandas DataFrame.
"""
return pd.DataFrame(self._variational_sample, columns=self.column_names)
def save_csvfiles(self, dir: Optional[str] = None) -> None:
"""
Move output CSV files to specified directory. If files were
written to the temporary session directory, clean filename.
E.g., save 'bernoulli-201912081451-1-5nm6as7u.csv' as
'bernoulli-201912081451-1.csv'.
:param dir: directory path
See Also
--------
stanfit.RunSet.save_csvfiles
cmdstanpy.from_csv
"""
self.runset.save_csvfiles(dir)