some new features

This commit is contained in:
ilgazca
2025-07-30 18:53:50 +03:00
parent 8019bd3b7c
commit 079804a0fc
2118 changed files with 297840 additions and 502 deletions

354
app.py
View File

@ -1,23 +1,10 @@
from flask import Flask, request, render_template, send_file, session
import pandas as pd
import io
import os
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
import pmdarima as pm
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import plotly.io as pio
from flask import Flask, request, render_template, session
from werkzeug.utils import secure_filename
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
import matplotlib.pyplot as plt
import io
import base64
import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error
from models.time_series import process_time_series
from models.plotting import create_comparison_plot
from utils.file_handling import allowed_file, read_file, save_processed_file
from utils.forecast_history import update_forecast_history, download_forecast_history
import os
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'Uploads'
@ -28,176 +15,6 @@ app.secret_key = 'your-secret-key' # Required for session management
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in app.config['ALLOWED_EXTENSIONS']
def create_acf_pacf_plots(data):
# Create ACF and PACF plots using matplotlib
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))
plot_acf(data, ax=ax1, lags=40)
ax1.set_title('Autocorrelation Function')
plot_pacf(data, ax=ax2, lags=40)
ax2.set_title('Partial Autocorrelation Function')
# Convert matplotlib plot to Plotly
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close(fig)
buf.seek(0)
img_str = base64.b64encode(buf.getvalue()).decode('utf-8')
# Create Plotly figure with image
fig_plotly = go.Figure()
fig_plotly.add_layout_image(
dict(
source=f'data:image/png;base64,{img_str}',
x=0,
y=1,
xref="paper",
yref="paper",
sizex=1,
sizey=1,
sizing="stretch",
opacity=1,
layer="below"
)
)
fig_plotly.update_layout(
height=600,
showlegend=False,
xaxis=dict(visible=False),
yaxis=dict(visible=False)
)
return pio.to_html(fig_plotly, full_html=False)
def process_time_series(filepath, do_decomposition, do_forecasting, do_acf_pacf, train_percent, forecast_periods):
try:
# Read file
if filepath.endswith('.csv'):
df = pd.read_csv(filepath)
else:
df = pd.read_excel(filepath)
# Ensure datetime column exists
date_col = df.columns[0] # Assume first column is date
value_col = df.columns[1] # Assume second column is value
df[date_col] = pd.to_datetime(df[date_col])
df.set_index(date_col, inplace=True)
# Initialize variables
plot_html = None
forecast_html = None
acf_pacf_html = None
summary = df[value_col].describe().to_dict()
arima_params = None
seasonal_params = None
train_size = None
test_size = None
metrics = None
# Save processed data
processed_df = df.copy()
# Time series decomposition
if do_decomposition:
decomposition = seasonal_decompose(df[value_col], model='additive', period=12)
fig = make_subplots(rows=4, cols=1,
subplot_titles=('Original Series', 'Trend', 'Seasonality', 'Residuals'))
fig.add_trace(go.Scatter(x=df.index, y=df[value_col], name='Original'), row=1, col=1)
fig.add_trace(go.Scatter(x=df.index, y=decomposition.trend, name='Trend'), row=2, col=1)
fig.add_trace(go.Scatter(x=df.index, y=decomposition.seasonal, name='Seasonality'), row=3, col=1)
fig.add_trace(go.Scatter(x=df.index, y=decomposition.resid, name='Residuals'), row=4, col=1)
fig.update_layout(height=800, showlegend=True)
plot_html = pio.to_html(fig, full_html=False)
processed_df['Trend'] = decomposition.trend
processed_df['Seasonality'] = decomposition.seasonal
processed_df['Residuals'] = decomposition.resid
# Forecasting
if do_forecasting:
# Split data into train and test
train_size = int(len(df) * train_percent)
test_size = len(df) - train_size
train_data = df[value_col].iloc[:train_size]
test_data = df[value_col].iloc[train_size:] if test_size > 0 else pd.Series()
# Auto ARIMA for best parameters
model = pm.auto_arima(train_data,
seasonal=True,
m=12,
start_p=0, start_q=0,
max_p=3, max_q=3,
start_P=0, start_Q=0,
max_P=2, max_Q=2,
d=1, D=1,
trace=False,
error_action='ignore',
suppress_warnings=True,
stepwise=True)
# Fit ARIMA with best parameters
model_fit = model.fit(train_data)
forecast = model_fit.predict(n_periods=forecast_periods)
# Get ARIMA parameters
arima_params = model.order
seasonal_params = model.seasonal_order
# Calculate metrics on test data if available
if test_size > 0:
test_predictions = model_fit.predict(n_periods=test_size)
mae = mean_absolute_error(test_data, test_predictions)
mse = mean_squared_error(test_data, test_predictions)
rmse = np.sqrt(mse)
metrics = {'MAE': mae, 'MSE': mse, 'RMSE': rmse}
# Forecast plot
forecast_dates = pd.date_range(start=df.index[-1], periods=forecast_periods + 1,
freq=df.index.inferred_freq)[1:]
forecast_fig = go.Figure()
forecast_fig.add_trace(go.Scatter(x=df.index, y=df[value_col], name='Historical'))
if test_size > 0:
forecast_fig.add_trace(
go.Scatter(x=df.index[train_size:], y=test_data, name='Test Data', line=dict(color='green')))
forecast_fig.add_trace(go.Scatter(x=forecast_dates, y=forecast,
name=f'Forecast (ARIMA{arima_params}, Seasonal{seasonal_params})',
line=dict(dash='dash')))
forecast_fig.update_layout(title='Forecast', height=400)
forecast_html = pio.to_html(forecast_fig, full_html=False)
# ACF/PACF plots
if do_acf_pacf:
acf_pacf_html = create_acf_pacf_plots(df[value_col])
# Save processed data
processed_df.to_csv(os.path.join(app.config['UPLOAD_FOLDER'], 'processed_' + os.path.basename(filepath)))
return {
'plot_html': plot_html,
'forecast_html': forecast_html,
'acf_pacf_html': acf_pacf_html,
'summary': summary,
'filename': 'processed_' + os.path.basename(filepath),
'arima_params': arima_params,
'seasonal_params': seasonal_params,
'train_size': train_size,
'test_size': test_size,
'metrics': metrics,
'forecast_dates': forecast_dates.tolist() if do_forecasting else [],
'forecast_values': forecast.tolist() if do_forecasting else []
}
except Exception as e:
return {'error': str(e)}
@app.route('/')
def index():
return render_template('index.html')
@ -227,6 +44,7 @@ def upload_file():
train_percent = float(request.form.get('train_percent', 80)) / 100
test_percent = float(request.form.get('test_percent', 20)) / 100
forecast_periods = int(request.form.get('forecast_periods', 12))
model_type = request.form.get('model_type', 'ARIMA')
# Validate train/test percentages
if abs(train_percent + test_percent - 1.0) > 0.01: # Allow small float precision errors
@ -238,33 +56,18 @@ def upload_file():
session['train_percent'] = train_percent
session['test_percent'] = test_percent
session['forecast_periods'] = forecast_periods
session['model_type'] = model_type
result = process_time_series(filepath, do_decomposition, do_forecasting, do_acf_pacf, train_percent,
forecast_periods)
forecast_periods, model_type)
if 'error' in result:
return render_template('index.html', error=result['error'])
# Update forecast history if unique
if do_forecasting and result['metrics']:
new_entry = {
'train_percent': train_percent * 100,
'test_percent': test_percent * 100,
'forecast_periods': forecast_periods,
'mae': result['metrics']['MAE'] if result['metrics'] else None,
'mse': result['metrics']['MSE'] if result['metrics'] else None,
'rmse': result['metrics']['RMSE'] if result['metrics'] else None
}
# Check for duplicates
forecast_history = session.get('forecast_history', [])
if not any(entry['train_percent'] == new_entry['train_percent'] and
entry['test_percent'] == new_entry['test_percent'] and
entry['forecast_periods'] == new_entry['forecast_periods']
for entry in forecast_history):
forecast_history.append(new_entry)
session['forecast_history'] = forecast_history
session['selected_indices'] = [len(forecast_history) - 1] # Select latest forecast
session.modified = True
update_forecast_history(session, train_percent, test_percent, forecast_periods, model_type,
result['metrics'])
return render_template('results.html',
do_decomposition=do_decomposition,
@ -288,6 +91,7 @@ def reforecast():
train_percent = float(request.form.get('train_percent', 80)) / 100
test_percent = float(request.form.get('test_percent', 20)) / 100
forecast_periods = int(request.form.get('forecast_periods', 12))
model_type = request.form.get('model_type', 'ARIMA')
add_to_existing = 'add_to_existing' in request.form
# Validate train/test percentages
@ -300,45 +104,26 @@ def reforecast():
do_acf_pacf = session.get('do_acf_pacf', False)
result = process_time_series(filepath, do_decomposition, do_forecasting, do_acf_pacf, train_percent,
forecast_periods)
forecast_periods, model_type)
if 'error' in result:
return render_template('index.html', error=result['error'])
# Update forecast history if unique
forecast_history = session.get('forecast_history', [])
selected_indices = session.get('selected_indices', [])
if do_forecasting and result['metrics']:
new_entry = {
'train_percent': train_percent * 100,
'test_percent': test_percent * 100,
'forecast_periods': forecast_periods,
'mae': result['metrics']['MAE'] if result['metrics'] else None,
'mse': result['metrics']['MSE'] if result['metrics'] else None,
'rmse': result['metrics']['RMSE'] if result['metrics'] else None
}
# Check for duplicates
if not any(entry['train_percent'] == new_entry['train_percent'] and
entry['test_percent'] == new_entry['test_percent'] and
entry['forecast_periods'] == new_entry['forecast_periods']
for entry in forecast_history):
forecast_history.append(new_entry)
session['forecast_history'] = forecast_history
if add_to_existing:
selected_indices.append(len(forecast_history) - 1)
else:
selected_indices = [len(forecast_history) - 1]
session['selected_indices'] = selected_indices
session.modified = True
update_forecast_history(session, train_percent, test_percent, forecast_periods, model_type, result['metrics'],
add_to_existing)
# Update session with current parameters
session['train_percent'] = train_percent
session['test_percent'] = test_percent
session['forecast_periods'] = forecast_periods
session['model_type'] = model_type
# Generate comparison plot if multiple forecasts are selected
if len(selected_indices) > 1:
result['forecast_html'] = create_comparison_plot(filepath, forecast_history, selected_indices)
if len(session.get('selected_indices', [])) > 1:
result['forecast_html'] = create_comparison_plot(filepath, session['forecast_history'],
session['selected_indices'])
return render_template('results.html',
do_decomposition=do_decomposition,
@ -347,75 +132,12 @@ def reforecast():
train_percent=train_percent * 100,
test_percent=test_percent * 100,
forecast_periods=forecast_periods,
forecast_history=forecast_history,
selected_indices=selected_indices,
forecast_history=session['forecast_history'],
selected_indices=session['selected_indices'],
scroll_to_forecast=True,
**result)
def create_comparison_plot(filepath, forecast_history, selected_indices):
# Read data
if filepath.endswith('.csv'):
df = pd.read_csv(filepath)
else:
df = pd.read_excel(filepath)
date_col = df.columns[0]
value_col = df.columns[1]
df[date_col] = pd.to_datetime(df[date_col])
df.set_index(date_col, inplace=True)
# Create Plotly figure
fig = go.Figure()
fig.add_trace(go.Scatter(x=df.index, y=df[value_col], name='Historical', line=dict(color='black')))
# Use Plotly qualitative colors
colors = px.colors.qualitative.Plotly
# Generate forecasts for selected indices
for idx, run_idx in enumerate(selected_indices):
entry = forecast_history[run_idx]
train_percent = entry['train_percent'] / 100
forecast_periods = entry['forecast_periods']
# Split data
train_size = int(len(df) * train_percent)
test_size = len(df) - train_size
train_data = df[value_col].iloc[:train_size]
test_data = df[value_col].iloc[train_size:] if test_size > 0 else pd.Series()
# Run ARIMA
model = pm.auto_arima(train_data,
seasonal=True,
m=12,
start_p=0, start_q=0,
max_p=3, max_q=3,
start_P=0, start_Q=0,
max_P=2, max_Q=2,
d=1, D=1,
trace=False,
error_action='ignore',
suppress_warnings=True,
stepwise=True)
model_fit = model.fit(train_data)
forecast = model_fit.predict(n_periods=forecast_periods)
forecast_dates = pd.date_range(start=df.index[-1], periods=forecast_periods + 1, freq=df.index.inferred_freq)[
1:]
# Add test data if available (only once to avoid clutter)
if test_size > 0 and idx == 0:
fig.add_trace(go.Scatter(x=df.index[train_size:], y=test_data, name='Test Data', line=dict(color='green')))
# Add forecast
label = f"Forecast Run {run_idx + 1}: {entry['train_percent']:.0f}/{entry['test_percent']:.0f}, {forecast_periods} periods"
fig.add_trace(go.Scatter(x=forecast_dates, y=forecast, name=label,
line=dict(dash='dash', color=colors[idx % len(colors)])))
fig.update_layout(title='Forecast Comparison', height=400, showlegend=True)
return pio.to_html(fig, full_html=False)
@app.route('/compare_forecasts', methods=['POST'])
def compare_forecasts():
filepath = session.get('filepath')
@ -438,14 +160,14 @@ def compare_forecasts():
train_percent = session.get('train_percent', 0.8)
test_percent = session.get('test_percent', 0.2)
forecast_periods = session.get('forecast_periods', 12)
forecast_history = session.get('forecast_history', [])
model_type = session.get('model_type', 'ARIMA')
# Generate comparison plot
forecast_html = create_comparison_plot(filepath, forecast_history, selected_indices)
forecast_html = create_comparison_plot(filepath, session['forecast_history'], selected_indices)
# Re-run the current forecast to maintain other results
result = process_time_series(filepath, do_decomposition, do_forecasting, do_acf_pacf, train_percent,
forecast_periods)
forecast_periods, model_type)
if 'error' in result:
return render_template('index.html', error=result['error'])
@ -459,7 +181,7 @@ def compare_forecasts():
train_percent=train_percent * 100,
test_percent=test_percent * 100,
forecast_periods=forecast_periods,
forecast_history=forecast_history,
forecast_history=session['forecast_history'],
selected_indices=selected_indices,
scroll_to_forecast=True,
**result)
@ -467,31 +189,7 @@ def compare_forecasts():
@app.route('/download_forecast_history')
def download_forecast_history():
forecast_history = session.get('forecast_history', [])
if not forecast_history:
return render_template('index.html', error='No forecast history available')
# Create DataFrame for forecast history
df = pd.DataFrame(forecast_history)
df = df.rename(columns={
'train_percent': 'Train Percent (%)',
'test_percent': 'Test Percent (%)',
'forecast_periods': 'Forecast Periods',
'mae': 'MAE',
'mse': 'MSE',
'rmse': 'RMSE'
})
df.insert(0, 'Run', range(1, len(df) + 1))
# Save to Excel
output = io.BytesIO()
df.to_excel(output, index=False)
output.seek(0)
return send_file(output,
mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet',
as_attachment=True,
download_name='forecast_history.xlsx')
return download_forecast_history(session)
@app.route('/download/<filename>')