reconnect moved files to git repo
This commit is contained in:
@ -0,0 +1,91 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from ..compat import DTYPE
|
||||
|
||||
__all__ = [
|
||||
'load_austres'
|
||||
]
|
||||
|
||||
|
||||
def load_austres(as_series=False, dtype=DTYPE):
|
||||
"""Quarterly residential data.
|
||||
|
||||
Numbers (in thousands) of Australian residents measured quarterly from
|
||||
March 1971 to March 1994.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
as_series : bool, optional (default=False)
|
||||
Whether to return a Pandas series. If False, will return a 1d
|
||||
numpy array.
|
||||
|
||||
dtype : type, optional (default=np.float64)
|
||||
The type to return for the array. Default is np.float64, which is used
|
||||
throughout the package as the default type.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rslt : array-like, shape=(n_samples,)
|
||||
The austres vector.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from pmdarima.datasets import load_austres
|
||||
>>> load_austres()
|
||||
np.array([13067.3, 13130.5, 13198.4, 13254.2, 13303.7, 13353.9,
|
||||
13409.3, 13459.2, 13504.5, 13552.6, 13614.3, 13669.5,
|
||||
13722.6, 13772.1, 13832.0, 13862.6, 13893.0, 13926.8,
|
||||
13968.9, 14004.7, 14033.1, 14066.0, 14110.1, 14155.6,
|
||||
14192.2, 14231.7, 14281.5, 14330.3, 14359.3, 14396.6,
|
||||
14430.8, 14478.4, 14515.7, 14554.9, 14602.5, 14646.4,
|
||||
14695.4, 14746.6, 14807.4, 14874.4, 14923.3, 14988.7,
|
||||
15054.1, 15121.7, 15184.2, 15239.3, 15288.9, 15346.2,
|
||||
15393.5, 15439.0, 15483.5, 15531.5, 15579.4, 15628.5,
|
||||
15677.3, 15736.7, 15788.3, 15839.7, 15900.6, 15961.5,
|
||||
16018.3, 16076.9, 16139.0, 16203.0, 16263.3, 16327.9,
|
||||
16398.9, 16478.3, 16538.2, 16621.6, 16697.0, 16777.2,
|
||||
16833.1, 16891.6, 16956.8, 17026.3, 17085.4, 17106.9,
|
||||
17169.4, 17239.4, 17292.0, 17354.2, 17414.2, 17447.3,
|
||||
17482.6, 17526.0, 17568.7, 17627.1, 17661.5])
|
||||
|
||||
>>> load_austres(True).head()
|
||||
0 13067.3
|
||||
1 13130.5
|
||||
2 13198.4
|
||||
3 13254.2
|
||||
4 13303.7
|
||||
dtype: float64
|
||||
|
||||
Notes
|
||||
-----
|
||||
This is quarterly data, so *m* should be set to 4 when using in a seasonal
|
||||
context.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] P. J. Brockwell and R. A. Davis (1996)
|
||||
"Introduction to Time Series and Forecasting." Springer
|
||||
"""
|
||||
rslt = np.array([
|
||||
13067.3, 13130.5, 13198.4, 13254.2, 13303.7, 13353.9,
|
||||
13409.3, 13459.2, 13504.5, 13552.6, 13614.3, 13669.5,
|
||||
13722.6, 13772.1, 13832.0, 13862.6, 13893.0, 13926.8,
|
||||
13968.9, 14004.7, 14033.1, 14066.0, 14110.1, 14155.6,
|
||||
14192.2, 14231.7, 14281.5, 14330.3, 14359.3, 14396.6,
|
||||
14430.8, 14478.4, 14515.7, 14554.9, 14602.5, 14646.4,
|
||||
14695.4, 14746.6, 14807.4, 14874.4, 14923.3, 14988.7,
|
||||
15054.1, 15121.7, 15184.2, 15239.3, 15288.9, 15346.2,
|
||||
15393.5, 15439.0, 15483.5, 15531.5, 15579.4, 15628.5,
|
||||
15677.3, 15736.7, 15788.3, 15839.7, 15900.6, 15961.5,
|
||||
16018.3, 16076.9, 16139.0, 16203.0, 16263.3, 16327.9,
|
||||
16398.9, 16478.3, 16538.2, 16621.6, 16697.0, 16777.2,
|
||||
16833.1, 16891.6, 16956.8, 17026.3, 17085.4, 17106.9,
|
||||
17169.4, 17239.4, 17292.0, 17354.2, 17414.2, 17447.3,
|
||||
17482.6, 17526.0, 17568.7, 17627.1, 17661.5]).astype(dtype)
|
||||
|
||||
if as_series:
|
||||
return pd.Series(rslt)
|
||||
return rslt
|
||||
Reference in New Issue
Block a user