reconnect moved files to git repo
This commit is contained in:
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,169 @@
|
||||
import pytest
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_array_almost_equal
|
||||
from scipy.spatial.transform import Rotation
|
||||
from scipy.optimize import linear_sum_assignment
|
||||
from scipy.spatial.distance import cdist
|
||||
from scipy.constants import golden as phi
|
||||
from scipy.spatial import cKDTree
|
||||
|
||||
|
||||
TOL = 1E-12
|
||||
NS = range(1, 13)
|
||||
NAMES = ["I", "O", "T"] + ["C%d" % n for n in NS] + ["D%d" % n for n in NS]
|
||||
SIZES = [60, 24, 12] + list(NS) + [2 * n for n in NS]
|
||||
|
||||
|
||||
def _calculate_rmsd(P, Q):
|
||||
"""Calculates the root-mean-square distance between the points of P and Q.
|
||||
The distance is taken as the minimum over all possible matchings. It is
|
||||
zero if P and Q are identical and non-zero if not.
|
||||
"""
|
||||
distance_matrix = cdist(P, Q, metric='sqeuclidean')
|
||||
matching = linear_sum_assignment(distance_matrix)
|
||||
return np.sqrt(distance_matrix[matching].sum())
|
||||
|
||||
|
||||
def _generate_pyramid(n, axis):
|
||||
thetas = np.linspace(0, 2 * np.pi, n + 1)[:-1]
|
||||
P = np.vstack([np.zeros(n), np.cos(thetas), np.sin(thetas)]).T
|
||||
P = np.concatenate((P, [[1, 0, 0]]))
|
||||
return np.roll(P, axis, axis=1)
|
||||
|
||||
|
||||
def _generate_prism(n, axis):
|
||||
thetas = np.linspace(0, 2 * np.pi, n + 1)[:-1]
|
||||
bottom = np.vstack([-np.ones(n), np.cos(thetas), np.sin(thetas)]).T
|
||||
top = np.vstack([+np.ones(n), np.cos(thetas), np.sin(thetas)]).T
|
||||
P = np.concatenate((bottom, top))
|
||||
return np.roll(P, axis, axis=1)
|
||||
|
||||
|
||||
def _generate_icosahedron():
|
||||
x = np.array([[0, -1, -phi],
|
||||
[0, -1, +phi],
|
||||
[0, +1, -phi],
|
||||
[0, +1, +phi]])
|
||||
return np.concatenate([np.roll(x, i, axis=1) for i in range(3)])
|
||||
|
||||
|
||||
def _generate_octahedron():
|
||||
return np.array([[-1, 0, 0], [+1, 0, 0], [0, -1, 0],
|
||||
[0, +1, 0], [0, 0, -1], [0, 0, +1]])
|
||||
|
||||
|
||||
def _generate_tetrahedron():
|
||||
return np.array([[1, 1, 1], [1, -1, -1], [-1, 1, -1], [-1, -1, 1]])
|
||||
|
||||
|
||||
@pytest.mark.parametrize("name", [-1, None, True, np.array(['C3'])])
|
||||
def test_group_type(name):
|
||||
with pytest.raises(ValueError,
|
||||
match="must be a string"):
|
||||
Rotation.create_group(name)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("name", ["Q", " ", "CA", "C ", "DA", "D ", "I2", ""])
|
||||
def test_group_name(name):
|
||||
with pytest.raises(ValueError,
|
||||
match="must be one of 'I', 'O', 'T', 'Dn', 'Cn'"):
|
||||
Rotation.create_group(name)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("name", ["C0", "D0"])
|
||||
def test_group_order_positive(name):
|
||||
with pytest.raises(ValueError,
|
||||
match="Group order must be positive"):
|
||||
Rotation.create_group(name)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("axis", ['A', 'b', 0, 1, 2, 4, False, None])
|
||||
def test_axis_valid(axis):
|
||||
with pytest.raises(ValueError,
|
||||
match="`axis` must be one of"):
|
||||
Rotation.create_group("C1", axis)
|
||||
|
||||
|
||||
def test_icosahedral():
|
||||
"""The icosahedral group fixes the rotations of an icosahedron. Here we
|
||||
test that the icosahedron is invariant after application of the elements
|
||||
of the rotation group."""
|
||||
P = _generate_icosahedron()
|
||||
for g in Rotation.create_group("I"):
|
||||
g = Rotation.from_quat(g.as_quat())
|
||||
assert _calculate_rmsd(P, g.apply(P)) < TOL
|
||||
|
||||
|
||||
def test_octahedral():
|
||||
"""Test that the octahedral group correctly fixes the rotations of an
|
||||
octahedron."""
|
||||
P = _generate_octahedron()
|
||||
for g in Rotation.create_group("O"):
|
||||
assert _calculate_rmsd(P, g.apply(P)) < TOL
|
||||
|
||||
|
||||
def test_tetrahedral():
|
||||
"""Test that the tetrahedral group correctly fixes the rotations of a
|
||||
tetrahedron."""
|
||||
P = _generate_tetrahedron()
|
||||
for g in Rotation.create_group("T"):
|
||||
assert _calculate_rmsd(P, g.apply(P)) < TOL
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n", NS)
|
||||
@pytest.mark.parametrize("axis", 'XYZ')
|
||||
def test_dicyclic(n, axis):
|
||||
"""Test that the dicyclic group correctly fixes the rotations of a
|
||||
prism."""
|
||||
P = _generate_prism(n, axis='XYZ'.index(axis))
|
||||
for g in Rotation.create_group("D%d" % n, axis=axis):
|
||||
assert _calculate_rmsd(P, g.apply(P)) < TOL
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n", NS)
|
||||
@pytest.mark.parametrize("axis", 'XYZ')
|
||||
def test_cyclic(n, axis):
|
||||
"""Test that the cyclic group correctly fixes the rotations of a
|
||||
pyramid."""
|
||||
P = _generate_pyramid(n, axis='XYZ'.index(axis))
|
||||
for g in Rotation.create_group("C%d" % n, axis=axis):
|
||||
assert _calculate_rmsd(P, g.apply(P)) < TOL
|
||||
|
||||
|
||||
@pytest.mark.parametrize("name, size", zip(NAMES, SIZES))
|
||||
def test_group_sizes(name, size):
|
||||
assert len(Rotation.create_group(name)) == size
|
||||
|
||||
|
||||
@pytest.mark.parametrize("name, size", zip(NAMES, SIZES))
|
||||
def test_group_no_duplicates(name, size):
|
||||
g = Rotation.create_group(name)
|
||||
kdtree = cKDTree(g.as_quat())
|
||||
assert len(kdtree.query_pairs(1E-3)) == 0
|
||||
|
||||
|
||||
@pytest.mark.parametrize("name, size", zip(NAMES, SIZES))
|
||||
def test_group_symmetry(name, size):
|
||||
g = Rotation.create_group(name)
|
||||
q = np.concatenate((-g.as_quat(), g.as_quat()))
|
||||
distance = np.sort(cdist(q, q))
|
||||
deltas = np.max(distance, axis=0) - np.min(distance, axis=0)
|
||||
assert (deltas < TOL).all()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("name", NAMES)
|
||||
def test_reduction(name):
|
||||
"""Test that the elements of the rotation group are correctly
|
||||
mapped onto the identity rotation."""
|
||||
g = Rotation.create_group(name)
|
||||
f = g.reduce(g)
|
||||
assert_array_almost_equal(f.magnitude(), np.zeros(len(g)))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("name", NAMES)
|
||||
def test_single_reduction(name):
|
||||
g = Rotation.create_group(name)
|
||||
f = g[-1].reduce(g)
|
||||
assert_array_almost_equal(f.magnitude(), 0)
|
||||
assert f.as_quat().shape == (4,)
|
||||
@ -0,0 +1,162 @@
|
||||
from itertools import product
|
||||
import numpy as np
|
||||
from numpy.testing import assert_allclose
|
||||
from pytest import raises
|
||||
from scipy.spatial.transform import Rotation, RotationSpline
|
||||
from scipy.spatial.transform._rotation_spline import (
|
||||
_angular_rate_to_rotvec_dot_matrix,
|
||||
_rotvec_dot_to_angular_rate_matrix,
|
||||
_matrix_vector_product_of_stacks,
|
||||
_angular_acceleration_nonlinear_term,
|
||||
_create_block_3_diagonal_matrix)
|
||||
|
||||
|
||||
def test_angular_rate_to_rotvec_conversions():
|
||||
np.random.seed(0)
|
||||
rv = np.random.randn(4, 3)
|
||||
A = _angular_rate_to_rotvec_dot_matrix(rv)
|
||||
A_inv = _rotvec_dot_to_angular_rate_matrix(rv)
|
||||
|
||||
# When the rotation vector is aligned with the angular rate, then
|
||||
# the rotation vector rate and angular rate are the same.
|
||||
assert_allclose(_matrix_vector_product_of_stacks(A, rv), rv)
|
||||
assert_allclose(_matrix_vector_product_of_stacks(A_inv, rv), rv)
|
||||
|
||||
# A and A_inv must be reciprocal to each other.
|
||||
I_stack = np.empty((4, 3, 3))
|
||||
I_stack[:] = np.eye(3)
|
||||
assert_allclose(np.matmul(A, A_inv), I_stack, atol=1e-15)
|
||||
|
||||
|
||||
def test_angular_rate_nonlinear_term():
|
||||
# The only simple test is to check that the term is zero when
|
||||
# the rotation vector
|
||||
np.random.seed(0)
|
||||
rv = np.random.rand(4, 3)
|
||||
assert_allclose(_angular_acceleration_nonlinear_term(rv, rv), 0,
|
||||
atol=1e-19)
|
||||
|
||||
|
||||
def test_create_block_3_diagonal_matrix():
|
||||
np.random.seed(0)
|
||||
A = np.empty((4, 3, 3))
|
||||
A[:] = np.arange(1, 5)[:, None, None]
|
||||
|
||||
B = np.empty((4, 3, 3))
|
||||
B[:] = -np.arange(1, 5)[:, None, None]
|
||||
d = 10 * np.arange(10, 15)
|
||||
|
||||
banded = _create_block_3_diagonal_matrix(A, B, d)
|
||||
|
||||
# Convert the banded matrix to the full matrix.
|
||||
k, l = list(zip(*product(np.arange(banded.shape[0]),
|
||||
np.arange(banded.shape[1]))))
|
||||
k = np.asarray(k)
|
||||
l = np.asarray(l)
|
||||
|
||||
i = k - 5 + l
|
||||
j = l
|
||||
values = banded.ravel()
|
||||
mask = (i >= 0) & (i < 15)
|
||||
i = i[mask]
|
||||
j = j[mask]
|
||||
values = values[mask]
|
||||
full = np.zeros((15, 15))
|
||||
full[i, j] = values
|
||||
|
||||
zero = np.zeros((3, 3))
|
||||
eye = np.eye(3)
|
||||
|
||||
# Create the reference full matrix in the most straightforward manner.
|
||||
ref = np.block([
|
||||
[d[0] * eye, B[0], zero, zero, zero],
|
||||
[A[0], d[1] * eye, B[1], zero, zero],
|
||||
[zero, A[1], d[2] * eye, B[2], zero],
|
||||
[zero, zero, A[2], d[3] * eye, B[3]],
|
||||
[zero, zero, zero, A[3], d[4] * eye],
|
||||
])
|
||||
|
||||
assert_allclose(full, ref, atol=1e-19)
|
||||
|
||||
|
||||
def test_spline_2_rotations():
|
||||
times = [0, 10]
|
||||
rotations = Rotation.from_euler('xyz', [[0, 0, 0], [10, -20, 30]],
|
||||
degrees=True)
|
||||
spline = RotationSpline(times, rotations)
|
||||
|
||||
rv = (rotations[0].inv() * rotations[1]).as_rotvec()
|
||||
rate = rv / (times[1] - times[0])
|
||||
times_check = np.array([-1, 5, 12])
|
||||
dt = times_check - times[0]
|
||||
rv_ref = rate * dt[:, None]
|
||||
|
||||
assert_allclose(spline(times_check).as_rotvec(), rv_ref)
|
||||
assert_allclose(spline(times_check, 1), np.resize(rate, (3, 3)))
|
||||
assert_allclose(spline(times_check, 2), 0, atol=1e-16)
|
||||
|
||||
|
||||
def test_constant_attitude():
|
||||
times = np.arange(10)
|
||||
rotations = Rotation.from_rotvec(np.ones((10, 3)))
|
||||
spline = RotationSpline(times, rotations)
|
||||
|
||||
times_check = np.linspace(-1, 11)
|
||||
assert_allclose(spline(times_check).as_rotvec(), 1, rtol=1e-15)
|
||||
assert_allclose(spline(times_check, 1), 0, atol=1e-17)
|
||||
assert_allclose(spline(times_check, 2), 0, atol=1e-17)
|
||||
|
||||
assert_allclose(spline(5.5).as_rotvec(), 1, rtol=1e-15)
|
||||
assert_allclose(spline(5.5, 1), 0, atol=1e-17)
|
||||
assert_allclose(spline(5.5, 2), 0, atol=1e-17)
|
||||
|
||||
|
||||
def test_spline_properties():
|
||||
times = np.array([0, 5, 15, 27])
|
||||
angles = [[-5, 10, 27], [3, 5, 38], [-12, 10, 25], [-15, 20, 11]]
|
||||
|
||||
rotations = Rotation.from_euler('xyz', angles, degrees=True)
|
||||
spline = RotationSpline(times, rotations)
|
||||
|
||||
assert_allclose(spline(times).as_euler('xyz', degrees=True), angles)
|
||||
assert_allclose(spline(0).as_euler('xyz', degrees=True), angles[0])
|
||||
|
||||
h = 1e-8
|
||||
rv0 = spline(times).as_rotvec()
|
||||
rvm = spline(times - h).as_rotvec()
|
||||
rvp = spline(times + h).as_rotvec()
|
||||
# rtol bumped from 1e-15 to 1.5e-15 in gh18414 for linux 32 bit
|
||||
assert_allclose(rv0, 0.5 * (rvp + rvm), rtol=1.5e-15)
|
||||
|
||||
r0 = spline(times, 1)
|
||||
rm = spline(times - h, 1)
|
||||
rp = spline(times + h, 1)
|
||||
assert_allclose(r0, 0.5 * (rm + rp), rtol=1e-14)
|
||||
|
||||
a0 = spline(times, 2)
|
||||
am = spline(times - h, 2)
|
||||
ap = spline(times + h, 2)
|
||||
assert_allclose(a0, am, rtol=1e-7)
|
||||
assert_allclose(a0, ap, rtol=1e-7)
|
||||
|
||||
|
||||
def test_error_handling():
|
||||
raises(ValueError, RotationSpline, [1.0], Rotation.random())
|
||||
|
||||
r = Rotation.random(10)
|
||||
t = np.arange(10).reshape(5, 2)
|
||||
raises(ValueError, RotationSpline, t, r)
|
||||
|
||||
t = np.arange(9)
|
||||
raises(ValueError, RotationSpline, t, r)
|
||||
|
||||
t = np.arange(10)
|
||||
t[5] = 0
|
||||
raises(ValueError, RotationSpline, t, r)
|
||||
|
||||
t = np.arange(10)
|
||||
|
||||
s = RotationSpline(t, r)
|
||||
raises(ValueError, s, 10, -1)
|
||||
|
||||
raises(ValueError, s, np.arange(10).reshape(5, 2))
|
||||
Reference in New Issue
Block a user