reconnect moved files to git repo
This commit is contained in:
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,56 @@
|
||||
"""Testing for bicluster metrics module"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
from sklearn.metrics import consensus_score
|
||||
from sklearn.metrics.cluster._bicluster import _jaccard
|
||||
from sklearn.utils._testing import assert_almost_equal
|
||||
|
||||
|
||||
def test_jaccard():
|
||||
a1 = np.array([True, True, False, False])
|
||||
a2 = np.array([True, True, True, True])
|
||||
a3 = np.array([False, True, True, False])
|
||||
a4 = np.array([False, False, True, True])
|
||||
|
||||
assert _jaccard(a1, a1, a1, a1) == 1
|
||||
assert _jaccard(a1, a1, a2, a2) == 0.25
|
||||
assert _jaccard(a1, a1, a3, a3) == 1.0 / 7
|
||||
assert _jaccard(a1, a1, a4, a4) == 0
|
||||
|
||||
|
||||
def test_consensus_score():
|
||||
a = [[True, True, False, False], [False, False, True, True]]
|
||||
b = a[::-1]
|
||||
|
||||
assert consensus_score((a, a), (a, a)) == 1
|
||||
assert consensus_score((a, a), (b, b)) == 1
|
||||
assert consensus_score((a, b), (a, b)) == 1
|
||||
assert consensus_score((a, b), (b, a)) == 1
|
||||
|
||||
assert consensus_score((a, a), (b, a)) == 0
|
||||
assert consensus_score((a, a), (a, b)) == 0
|
||||
assert consensus_score((b, b), (a, b)) == 0
|
||||
assert consensus_score((b, b), (b, a)) == 0
|
||||
|
||||
|
||||
def test_consensus_score_issue2445():
|
||||
"""Different number of biclusters in A and B"""
|
||||
a_rows = np.array(
|
||||
[
|
||||
[True, True, False, False],
|
||||
[False, False, True, True],
|
||||
[False, False, False, True],
|
||||
]
|
||||
)
|
||||
a_cols = np.array(
|
||||
[
|
||||
[True, True, False, False],
|
||||
[False, False, True, True],
|
||||
[False, False, False, True],
|
||||
]
|
||||
)
|
||||
idx = [0, 2]
|
||||
s = consensus_score((a_rows, a_cols), (a_rows[idx], a_cols[idx]))
|
||||
# B contains 2 of the 3 biclusters in A, so score should be 2/3
|
||||
assert_almost_equal(s, 2.0 / 3.0)
|
||||
@ -0,0 +1,219 @@
|
||||
from functools import partial
|
||||
from itertools import chain
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from sklearn.metrics.cluster import (
|
||||
adjusted_mutual_info_score,
|
||||
adjusted_rand_score,
|
||||
calinski_harabasz_score,
|
||||
completeness_score,
|
||||
davies_bouldin_score,
|
||||
fowlkes_mallows_score,
|
||||
homogeneity_score,
|
||||
mutual_info_score,
|
||||
normalized_mutual_info_score,
|
||||
rand_score,
|
||||
silhouette_score,
|
||||
v_measure_score,
|
||||
)
|
||||
from sklearn.utils._testing import assert_allclose
|
||||
|
||||
# Dictionaries of metrics
|
||||
# ------------------------
|
||||
# The goal of having those dictionaries is to have an easy way to call a
|
||||
# particular metric and associate a name to each function:
|
||||
# - SUPERVISED_METRICS: all supervised cluster metrics - (when given a
|
||||
# ground truth value)
|
||||
# - UNSUPERVISED_METRICS: all unsupervised cluster metrics
|
||||
#
|
||||
# Those dictionaries will be used to test systematically some invariance
|
||||
# properties, e.g. invariance toward several input layout.
|
||||
#
|
||||
|
||||
SUPERVISED_METRICS = {
|
||||
"adjusted_mutual_info_score": adjusted_mutual_info_score,
|
||||
"adjusted_rand_score": adjusted_rand_score,
|
||||
"rand_score": rand_score,
|
||||
"completeness_score": completeness_score,
|
||||
"homogeneity_score": homogeneity_score,
|
||||
"mutual_info_score": mutual_info_score,
|
||||
"normalized_mutual_info_score": normalized_mutual_info_score,
|
||||
"v_measure_score": v_measure_score,
|
||||
"fowlkes_mallows_score": fowlkes_mallows_score,
|
||||
}
|
||||
|
||||
UNSUPERVISED_METRICS = {
|
||||
"silhouette_score": silhouette_score,
|
||||
"silhouette_manhattan": partial(silhouette_score, metric="manhattan"),
|
||||
"calinski_harabasz_score": calinski_harabasz_score,
|
||||
"davies_bouldin_score": davies_bouldin_score,
|
||||
}
|
||||
|
||||
# Lists of metrics with common properties
|
||||
# ---------------------------------------
|
||||
# Lists of metrics with common properties are used to test systematically some
|
||||
# functionalities and invariance, e.g. SYMMETRIC_METRICS lists all metrics
|
||||
# that are symmetric with respect to their input argument y_true and y_pred.
|
||||
#
|
||||
# --------------------------------------------------------------------
|
||||
# Symmetric with respect to their input arguments y_true and y_pred.
|
||||
# Symmetric metrics only apply to supervised clusters.
|
||||
SYMMETRIC_METRICS = [
|
||||
"adjusted_rand_score",
|
||||
"rand_score",
|
||||
"v_measure_score",
|
||||
"mutual_info_score",
|
||||
"adjusted_mutual_info_score",
|
||||
"normalized_mutual_info_score",
|
||||
"fowlkes_mallows_score",
|
||||
]
|
||||
|
||||
NON_SYMMETRIC_METRICS = ["homogeneity_score", "completeness_score"]
|
||||
|
||||
# Metrics whose upper bound is 1
|
||||
NORMALIZED_METRICS = [
|
||||
"adjusted_rand_score",
|
||||
"rand_score",
|
||||
"homogeneity_score",
|
||||
"completeness_score",
|
||||
"v_measure_score",
|
||||
"adjusted_mutual_info_score",
|
||||
"fowlkes_mallows_score",
|
||||
"normalized_mutual_info_score",
|
||||
]
|
||||
|
||||
|
||||
rng = np.random.RandomState(0)
|
||||
y1 = rng.randint(3, size=30)
|
||||
y2 = rng.randint(3, size=30)
|
||||
|
||||
|
||||
def test_symmetric_non_symmetric_union():
|
||||
assert sorted(SYMMETRIC_METRICS + NON_SYMMETRIC_METRICS) == sorted(
|
||||
SUPERVISED_METRICS
|
||||
)
|
||||
|
||||
|
||||
# 0.22 AMI and NMI changes
|
||||
@pytest.mark.filterwarnings("ignore::FutureWarning")
|
||||
@pytest.mark.parametrize(
|
||||
"metric_name, y1, y2", [(name, y1, y2) for name in SYMMETRIC_METRICS]
|
||||
)
|
||||
def test_symmetry(metric_name, y1, y2):
|
||||
metric = SUPERVISED_METRICS[metric_name]
|
||||
assert metric(y1, y2) == pytest.approx(metric(y2, y1))
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"metric_name, y1, y2", [(name, y1, y2) for name in NON_SYMMETRIC_METRICS]
|
||||
)
|
||||
def test_non_symmetry(metric_name, y1, y2):
|
||||
metric = SUPERVISED_METRICS[metric_name]
|
||||
assert metric(y1, y2) != pytest.approx(metric(y2, y1))
|
||||
|
||||
|
||||
# 0.22 AMI and NMI changes
|
||||
@pytest.mark.filterwarnings("ignore::FutureWarning")
|
||||
@pytest.mark.parametrize("metric_name", NORMALIZED_METRICS)
|
||||
def test_normalized_output(metric_name):
|
||||
upper_bound_1 = [0, 0, 0, 1, 1, 1]
|
||||
upper_bound_2 = [0, 0, 0, 1, 1, 1]
|
||||
metric = SUPERVISED_METRICS[metric_name]
|
||||
assert metric([0, 0, 0, 1, 1], [0, 0, 0, 1, 2]) > 0.0
|
||||
assert metric([0, 0, 1, 1, 2], [0, 0, 1, 1, 1]) > 0.0
|
||||
assert metric([0, 0, 0, 1, 2], [0, 1, 1, 1, 1]) < 1.0
|
||||
assert metric([0, 0, 0, 1, 2], [0, 1, 1, 1, 1]) < 1.0
|
||||
assert metric(upper_bound_1, upper_bound_2) == pytest.approx(1.0)
|
||||
|
||||
lower_bound_1 = [0, 0, 0, 0, 0, 0]
|
||||
lower_bound_2 = [0, 1, 2, 3, 4, 5]
|
||||
score = np.array(
|
||||
[metric(lower_bound_1, lower_bound_2), metric(lower_bound_2, lower_bound_1)]
|
||||
)
|
||||
assert not (score < 0).any()
|
||||
|
||||
|
||||
# 0.22 AMI and NMI changes
|
||||
@pytest.mark.filterwarnings("ignore::FutureWarning")
|
||||
@pytest.mark.parametrize("metric_name", chain(SUPERVISED_METRICS, UNSUPERVISED_METRICS))
|
||||
def test_permute_labels(metric_name):
|
||||
# All clustering metrics do not change score due to permutations of labels
|
||||
# that is when 0 and 1 exchanged.
|
||||
y_label = np.array([0, 0, 0, 1, 1, 0, 1])
|
||||
y_pred = np.array([1, 0, 1, 0, 1, 1, 0])
|
||||
if metric_name in SUPERVISED_METRICS:
|
||||
metric = SUPERVISED_METRICS[metric_name]
|
||||
score_1 = metric(y_pred, y_label)
|
||||
assert_allclose(score_1, metric(1 - y_pred, y_label))
|
||||
assert_allclose(score_1, metric(1 - y_pred, 1 - y_label))
|
||||
assert_allclose(score_1, metric(y_pred, 1 - y_label))
|
||||
else:
|
||||
metric = UNSUPERVISED_METRICS[metric_name]
|
||||
X = np.random.randint(10, size=(7, 10))
|
||||
score_1 = metric(X, y_pred)
|
||||
assert_allclose(score_1, metric(X, 1 - y_pred))
|
||||
|
||||
|
||||
# 0.22 AMI and NMI changes
|
||||
@pytest.mark.filterwarnings("ignore::FutureWarning")
|
||||
@pytest.mark.parametrize("metric_name", chain(SUPERVISED_METRICS, UNSUPERVISED_METRICS))
|
||||
# For all clustering metrics Input parameters can be both
|
||||
# in the form of arrays lists, positive, negative or string
|
||||
def test_format_invariance(metric_name):
|
||||
y_true = [0, 0, 0, 0, 1, 1, 1, 1]
|
||||
y_pred = [0, 1, 2, 3, 4, 5, 6, 7]
|
||||
|
||||
def generate_formats(y):
|
||||
y = np.array(y)
|
||||
yield y, "array of ints"
|
||||
yield y.tolist(), "list of ints"
|
||||
yield [str(x) + "-a" for x in y.tolist()], "list of strs"
|
||||
yield (
|
||||
np.array([str(x) + "-a" for x in y.tolist()], dtype=object),
|
||||
"array of strs",
|
||||
)
|
||||
yield y - 1, "including negative ints"
|
||||
yield y + 1, "strictly positive ints"
|
||||
|
||||
if metric_name in SUPERVISED_METRICS:
|
||||
metric = SUPERVISED_METRICS[metric_name]
|
||||
score_1 = metric(y_true, y_pred)
|
||||
y_true_gen = generate_formats(y_true)
|
||||
y_pred_gen = generate_formats(y_pred)
|
||||
for (y_true_fmt, fmt_name), (y_pred_fmt, _) in zip(y_true_gen, y_pred_gen):
|
||||
assert score_1 == metric(y_true_fmt, y_pred_fmt)
|
||||
else:
|
||||
metric = UNSUPERVISED_METRICS[metric_name]
|
||||
X = np.random.randint(10, size=(8, 10))
|
||||
score_1 = metric(X, y_true)
|
||||
assert score_1 == metric(X.astype(float), y_true)
|
||||
y_true_gen = generate_formats(y_true)
|
||||
for y_true_fmt, fmt_name in y_true_gen:
|
||||
assert score_1 == metric(X, y_true_fmt)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("metric", SUPERVISED_METRICS.values())
|
||||
def test_single_sample(metric):
|
||||
# only the supervised metrics support single sample
|
||||
for i, j in [(0, 0), (0, 1), (1, 0), (1, 1)]:
|
||||
metric([i], [j])
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"metric_name, metric_func", dict(SUPERVISED_METRICS, **UNSUPERVISED_METRICS).items()
|
||||
)
|
||||
def test_inf_nan_input(metric_name, metric_func):
|
||||
if metric_name in SUPERVISED_METRICS:
|
||||
invalids = [
|
||||
([0, 1], [np.inf, np.inf]),
|
||||
([0, 1], [np.nan, np.nan]),
|
||||
([0, 1], [np.nan, np.inf]),
|
||||
]
|
||||
else:
|
||||
X = np.random.randint(10, size=(2, 10))
|
||||
invalids = [(X, [np.inf, np.inf]), (X, [np.nan, np.nan]), (X, [np.nan, np.inf])]
|
||||
with pytest.raises(ValueError, match=r"contains (NaN|infinity)"):
|
||||
for args in invalids:
|
||||
metric_func(*args)
|
||||
@ -0,0 +1,482 @@
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpy.testing import assert_allclose, assert_array_almost_equal, assert_array_equal
|
||||
|
||||
from sklearn.metrics.cluster import (
|
||||
adjusted_mutual_info_score,
|
||||
adjusted_rand_score,
|
||||
completeness_score,
|
||||
contingency_matrix,
|
||||
entropy,
|
||||
expected_mutual_information,
|
||||
fowlkes_mallows_score,
|
||||
homogeneity_completeness_v_measure,
|
||||
homogeneity_score,
|
||||
mutual_info_score,
|
||||
normalized_mutual_info_score,
|
||||
pair_confusion_matrix,
|
||||
rand_score,
|
||||
v_measure_score,
|
||||
)
|
||||
from sklearn.metrics.cluster._supervised import _generalized_average, check_clusterings
|
||||
from sklearn.utils import assert_all_finite
|
||||
from sklearn.utils._testing import assert_almost_equal
|
||||
|
||||
score_funcs = [
|
||||
adjusted_rand_score,
|
||||
rand_score,
|
||||
homogeneity_score,
|
||||
completeness_score,
|
||||
v_measure_score,
|
||||
adjusted_mutual_info_score,
|
||||
normalized_mutual_info_score,
|
||||
]
|
||||
|
||||
|
||||
def test_error_messages_on_wrong_input():
|
||||
for score_func in score_funcs:
|
||||
expected = (
|
||||
r"Found input variables with inconsistent numbers " r"of samples: \[2, 3\]"
|
||||
)
|
||||
with pytest.raises(ValueError, match=expected):
|
||||
score_func([0, 1], [1, 1, 1])
|
||||
|
||||
expected = r"labels_true must be 1D: shape is \(2"
|
||||
with pytest.raises(ValueError, match=expected):
|
||||
score_func([[0, 1], [1, 0]], [1, 1, 1])
|
||||
|
||||
expected = r"labels_pred must be 1D: shape is \(2"
|
||||
with pytest.raises(ValueError, match=expected):
|
||||
score_func([0, 1, 0], [[1, 1], [0, 0]])
|
||||
|
||||
|
||||
def test_generalized_average():
|
||||
a, b = 1, 2
|
||||
methods = ["min", "geometric", "arithmetic", "max"]
|
||||
means = [_generalized_average(a, b, method) for method in methods]
|
||||
assert means[0] <= means[1] <= means[2] <= means[3]
|
||||
c, d = 12, 12
|
||||
means = [_generalized_average(c, d, method) for method in methods]
|
||||
assert means[0] == means[1] == means[2] == means[3]
|
||||
|
||||
|
||||
def test_perfect_matches():
|
||||
for score_func in score_funcs:
|
||||
assert score_func([], []) == pytest.approx(1.0)
|
||||
assert score_func([0], [1]) == pytest.approx(1.0)
|
||||
assert score_func([0, 0, 0], [0, 0, 0]) == pytest.approx(1.0)
|
||||
assert score_func([0, 1, 0], [42, 7, 42]) == pytest.approx(1.0)
|
||||
assert score_func([0.0, 1.0, 0.0], [42.0, 7.0, 42.0]) == pytest.approx(1.0)
|
||||
assert score_func([0.0, 1.0, 2.0], [42.0, 7.0, 2.0]) == pytest.approx(1.0)
|
||||
assert score_func([0, 1, 2], [42, 7, 2]) == pytest.approx(1.0)
|
||||
score_funcs_with_changing_means = [
|
||||
normalized_mutual_info_score,
|
||||
adjusted_mutual_info_score,
|
||||
]
|
||||
means = {"min", "geometric", "arithmetic", "max"}
|
||||
for score_func in score_funcs_with_changing_means:
|
||||
for mean in means:
|
||||
assert score_func([], [], average_method=mean) == pytest.approx(1.0)
|
||||
assert score_func([0], [1], average_method=mean) == pytest.approx(1.0)
|
||||
assert score_func(
|
||||
[0, 0, 0], [0, 0, 0], average_method=mean
|
||||
) == pytest.approx(1.0)
|
||||
assert score_func(
|
||||
[0, 1, 0], [42, 7, 42], average_method=mean
|
||||
) == pytest.approx(1.0)
|
||||
assert score_func(
|
||||
[0.0, 1.0, 0.0], [42.0, 7.0, 42.0], average_method=mean
|
||||
) == pytest.approx(1.0)
|
||||
assert score_func(
|
||||
[0.0, 1.0, 2.0], [42.0, 7.0, 2.0], average_method=mean
|
||||
) == pytest.approx(1.0)
|
||||
assert score_func(
|
||||
[0, 1, 2], [42, 7, 2], average_method=mean
|
||||
) == pytest.approx(1.0)
|
||||
|
||||
|
||||
def test_homogeneous_but_not_complete_labeling():
|
||||
# homogeneous but not complete clustering
|
||||
h, c, v = homogeneity_completeness_v_measure([0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 2, 2])
|
||||
assert_almost_equal(h, 1.00, 2)
|
||||
assert_almost_equal(c, 0.69, 2)
|
||||
assert_almost_equal(v, 0.81, 2)
|
||||
|
||||
|
||||
def test_complete_but_not_homogeneous_labeling():
|
||||
# complete but not homogeneous clustering
|
||||
h, c, v = homogeneity_completeness_v_measure([0, 0, 1, 1, 2, 2], [0, 0, 1, 1, 1, 1])
|
||||
assert_almost_equal(h, 0.58, 2)
|
||||
assert_almost_equal(c, 1.00, 2)
|
||||
assert_almost_equal(v, 0.73, 2)
|
||||
|
||||
|
||||
def test_not_complete_and_not_homogeneous_labeling():
|
||||
# neither complete nor homogeneous but not so bad either
|
||||
h, c, v = homogeneity_completeness_v_measure([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2])
|
||||
assert_almost_equal(h, 0.67, 2)
|
||||
assert_almost_equal(c, 0.42, 2)
|
||||
assert_almost_equal(v, 0.52, 2)
|
||||
|
||||
|
||||
def test_beta_parameter():
|
||||
# test for when beta passed to
|
||||
# homogeneity_completeness_v_measure
|
||||
# and v_measure_score
|
||||
beta_test = 0.2
|
||||
h_test = 0.67
|
||||
c_test = 0.42
|
||||
v_test = (1 + beta_test) * h_test * c_test / (beta_test * h_test + c_test)
|
||||
|
||||
h, c, v = homogeneity_completeness_v_measure(
|
||||
[0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2], beta=beta_test
|
||||
)
|
||||
assert_almost_equal(h, h_test, 2)
|
||||
assert_almost_equal(c, c_test, 2)
|
||||
assert_almost_equal(v, v_test, 2)
|
||||
|
||||
v = v_measure_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2], beta=beta_test)
|
||||
assert_almost_equal(v, v_test, 2)
|
||||
|
||||
|
||||
def test_non_consecutive_labels():
|
||||
# regression tests for labels with gaps
|
||||
h, c, v = homogeneity_completeness_v_measure([0, 0, 0, 2, 2, 2], [0, 1, 0, 1, 2, 2])
|
||||
assert_almost_equal(h, 0.67, 2)
|
||||
assert_almost_equal(c, 0.42, 2)
|
||||
assert_almost_equal(v, 0.52, 2)
|
||||
|
||||
h, c, v = homogeneity_completeness_v_measure([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2])
|
||||
assert_almost_equal(h, 0.67, 2)
|
||||
assert_almost_equal(c, 0.42, 2)
|
||||
assert_almost_equal(v, 0.52, 2)
|
||||
|
||||
ari_1 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2])
|
||||
ari_2 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2])
|
||||
assert_almost_equal(ari_1, 0.24, 2)
|
||||
assert_almost_equal(ari_2, 0.24, 2)
|
||||
|
||||
ri_1 = rand_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2])
|
||||
ri_2 = rand_score([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2])
|
||||
assert_almost_equal(ri_1, 0.66, 2)
|
||||
assert_almost_equal(ri_2, 0.66, 2)
|
||||
|
||||
|
||||
def uniform_labelings_scores(score_func, n_samples, k_range, n_runs=10, seed=42):
|
||||
# Compute score for random uniform cluster labelings
|
||||
random_labels = np.random.RandomState(seed).randint
|
||||
scores = np.zeros((len(k_range), n_runs))
|
||||
for i, k in enumerate(k_range):
|
||||
for j in range(n_runs):
|
||||
labels_a = random_labels(low=0, high=k, size=n_samples)
|
||||
labels_b = random_labels(low=0, high=k, size=n_samples)
|
||||
scores[i, j] = score_func(labels_a, labels_b)
|
||||
return scores
|
||||
|
||||
|
||||
def test_adjustment_for_chance():
|
||||
# Check that adjusted scores are almost zero on random labels
|
||||
n_clusters_range = [2, 10, 50, 90]
|
||||
n_samples = 100
|
||||
n_runs = 10
|
||||
|
||||
scores = uniform_labelings_scores(
|
||||
adjusted_rand_score, n_samples, n_clusters_range, n_runs
|
||||
)
|
||||
|
||||
max_abs_scores = np.abs(scores).max(axis=1)
|
||||
assert_array_almost_equal(max_abs_scores, [0.02, 0.03, 0.03, 0.02], 2)
|
||||
|
||||
|
||||
def test_adjusted_mutual_info_score():
|
||||
# Compute the Adjusted Mutual Information and test against known values
|
||||
labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3])
|
||||
labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2])
|
||||
# Mutual information
|
||||
mi = mutual_info_score(labels_a, labels_b)
|
||||
assert_almost_equal(mi, 0.41022, 5)
|
||||
# with provided sparse contingency
|
||||
C = contingency_matrix(labels_a, labels_b, sparse=True)
|
||||
mi = mutual_info_score(labels_a, labels_b, contingency=C)
|
||||
assert_almost_equal(mi, 0.41022, 5)
|
||||
# with provided dense contingency
|
||||
C = contingency_matrix(labels_a, labels_b)
|
||||
mi = mutual_info_score(labels_a, labels_b, contingency=C)
|
||||
assert_almost_equal(mi, 0.41022, 5)
|
||||
# Expected mutual information
|
||||
n_samples = C.sum()
|
||||
emi = expected_mutual_information(C, n_samples)
|
||||
assert_almost_equal(emi, 0.15042, 5)
|
||||
# Adjusted mutual information
|
||||
ami = adjusted_mutual_info_score(labels_a, labels_b)
|
||||
assert_almost_equal(ami, 0.27821, 5)
|
||||
ami = adjusted_mutual_info_score([1, 1, 2, 2], [2, 2, 3, 3])
|
||||
assert ami == pytest.approx(1.0)
|
||||
# Test with a very large array
|
||||
a110 = np.array([list(labels_a) * 110]).flatten()
|
||||
b110 = np.array([list(labels_b) * 110]).flatten()
|
||||
ami = adjusted_mutual_info_score(a110, b110)
|
||||
assert_almost_equal(ami, 0.38, 2)
|
||||
|
||||
|
||||
def test_expected_mutual_info_overflow():
|
||||
# Test for regression where contingency cell exceeds 2**16
|
||||
# leading to overflow in np.outer, resulting in EMI > 1
|
||||
assert expected_mutual_information(np.array([[70000]]), 70000) <= 1
|
||||
|
||||
|
||||
def test_int_overflow_mutual_info_fowlkes_mallows_score():
|
||||
# Test overflow in mutual_info_classif and fowlkes_mallows_score
|
||||
x = np.array(
|
||||
[1] * (52632 + 2529)
|
||||
+ [2] * (14660 + 793)
|
||||
+ [3] * (3271 + 204)
|
||||
+ [4] * (814 + 39)
|
||||
+ [5] * (316 + 20)
|
||||
)
|
||||
y = np.array(
|
||||
[0] * 52632
|
||||
+ [1] * 2529
|
||||
+ [0] * 14660
|
||||
+ [1] * 793
|
||||
+ [0] * 3271
|
||||
+ [1] * 204
|
||||
+ [0] * 814
|
||||
+ [1] * 39
|
||||
+ [0] * 316
|
||||
+ [1] * 20
|
||||
)
|
||||
|
||||
assert_all_finite(mutual_info_score(x, y))
|
||||
assert_all_finite(fowlkes_mallows_score(x, y))
|
||||
|
||||
|
||||
def test_entropy():
|
||||
ent = entropy([0, 0, 42.0])
|
||||
assert_almost_equal(ent, 0.6365141, 5)
|
||||
assert_almost_equal(entropy([]), 1)
|
||||
assert entropy([1, 1, 1, 1]) == 0
|
||||
|
||||
|
||||
def test_contingency_matrix():
|
||||
labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3])
|
||||
labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2])
|
||||
C = contingency_matrix(labels_a, labels_b)
|
||||
C2 = np.histogram2d(labels_a, labels_b, bins=(np.arange(1, 5), np.arange(1, 5)))[0]
|
||||
assert_array_almost_equal(C, C2)
|
||||
C = contingency_matrix(labels_a, labels_b, eps=0.1)
|
||||
assert_array_almost_equal(C, C2 + 0.1)
|
||||
|
||||
|
||||
def test_contingency_matrix_sparse():
|
||||
labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3])
|
||||
labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2])
|
||||
C = contingency_matrix(labels_a, labels_b)
|
||||
C_sparse = contingency_matrix(labels_a, labels_b, sparse=True).toarray()
|
||||
assert_array_almost_equal(C, C_sparse)
|
||||
with pytest.raises(ValueError, match="Cannot set 'eps' when sparse=True"):
|
||||
contingency_matrix(labels_a, labels_b, eps=1e-10, sparse=True)
|
||||
|
||||
|
||||
def test_exactly_zero_info_score():
|
||||
# Check numerical stability when information is exactly zero
|
||||
for i in np.logspace(1, 4, 4).astype(int):
|
||||
labels_a, labels_b = (np.ones(i, dtype=int), np.arange(i, dtype=int))
|
||||
assert normalized_mutual_info_score(labels_a, labels_b) == pytest.approx(0.0)
|
||||
assert v_measure_score(labels_a, labels_b) == pytest.approx(0.0)
|
||||
assert adjusted_mutual_info_score(labels_a, labels_b) == pytest.approx(0.0)
|
||||
assert normalized_mutual_info_score(labels_a, labels_b) == pytest.approx(0.0)
|
||||
for method in ["min", "geometric", "arithmetic", "max"]:
|
||||
assert adjusted_mutual_info_score(
|
||||
labels_a, labels_b, average_method=method
|
||||
) == pytest.approx(0.0)
|
||||
assert normalized_mutual_info_score(
|
||||
labels_a, labels_b, average_method=method
|
||||
) == pytest.approx(0.0)
|
||||
|
||||
|
||||
def test_v_measure_and_mutual_information(seed=36):
|
||||
# Check relation between v_measure, entropy and mutual information
|
||||
for i in np.logspace(1, 4, 4).astype(int):
|
||||
random_state = np.random.RandomState(seed)
|
||||
labels_a, labels_b = (
|
||||
random_state.randint(0, 10, i),
|
||||
random_state.randint(0, 10, i),
|
||||
)
|
||||
assert_almost_equal(
|
||||
v_measure_score(labels_a, labels_b),
|
||||
2.0
|
||||
* mutual_info_score(labels_a, labels_b)
|
||||
/ (entropy(labels_a) + entropy(labels_b)),
|
||||
0,
|
||||
)
|
||||
avg = "arithmetic"
|
||||
assert_almost_equal(
|
||||
v_measure_score(labels_a, labels_b),
|
||||
normalized_mutual_info_score(labels_a, labels_b, average_method=avg),
|
||||
)
|
||||
|
||||
|
||||
def test_fowlkes_mallows_score():
|
||||
# General case
|
||||
score = fowlkes_mallows_score([0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 2, 2])
|
||||
assert_almost_equal(score, 4.0 / np.sqrt(12.0 * 6.0))
|
||||
|
||||
# Perfect match but where the label names changed
|
||||
perfect_score = fowlkes_mallows_score([0, 0, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0])
|
||||
assert_almost_equal(perfect_score, 1.0)
|
||||
|
||||
# Worst case
|
||||
worst_score = fowlkes_mallows_score([0, 0, 0, 0, 0, 0], [0, 1, 2, 3, 4, 5])
|
||||
assert_almost_equal(worst_score, 0.0)
|
||||
|
||||
|
||||
def test_fowlkes_mallows_score_properties():
|
||||
# handcrafted example
|
||||
labels_a = np.array([0, 0, 0, 1, 1, 2])
|
||||
labels_b = np.array([1, 1, 2, 2, 0, 0])
|
||||
expected = 1.0 / np.sqrt((1.0 + 3.0) * (1.0 + 2.0))
|
||||
# FMI = TP / sqrt((TP + FP) * (TP + FN))
|
||||
|
||||
score_original = fowlkes_mallows_score(labels_a, labels_b)
|
||||
assert_almost_equal(score_original, expected)
|
||||
|
||||
# symmetric property
|
||||
score_symmetric = fowlkes_mallows_score(labels_b, labels_a)
|
||||
assert_almost_equal(score_symmetric, expected)
|
||||
|
||||
# permutation property
|
||||
score_permuted = fowlkes_mallows_score((labels_a + 1) % 3, labels_b)
|
||||
assert_almost_equal(score_permuted, expected)
|
||||
|
||||
# symmetric and permutation(both together)
|
||||
score_both = fowlkes_mallows_score(labels_b, (labels_a + 2) % 3)
|
||||
assert_almost_equal(score_both, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"labels_true, labels_pred",
|
||||
[
|
||||
(["a"] * 6, [1, 1, 0, 0, 1, 1]),
|
||||
([1] * 6, [1, 1, 0, 0, 1, 1]),
|
||||
([1, 1, 0, 0, 1, 1], ["a"] * 6),
|
||||
([1, 1, 0, 0, 1, 1], [1] * 6),
|
||||
(["a"] * 6, ["a"] * 6),
|
||||
],
|
||||
)
|
||||
def test_mutual_info_score_positive_constant_label(labels_true, labels_pred):
|
||||
# Check that MI = 0 when one or both labelling are constant
|
||||
# non-regression test for #16355
|
||||
assert mutual_info_score(labels_true, labels_pred) == 0
|
||||
|
||||
|
||||
def test_check_clustering_error():
|
||||
# Test warning message for continuous values
|
||||
rng = np.random.RandomState(42)
|
||||
noise = rng.rand(500)
|
||||
wavelength = np.linspace(0.01, 1, 500) * 1e-6
|
||||
msg = (
|
||||
"Clustering metrics expects discrete values but received "
|
||||
"continuous values for label, and continuous values for "
|
||||
"target"
|
||||
)
|
||||
|
||||
with pytest.warns(UserWarning, match=msg):
|
||||
check_clusterings(wavelength, noise)
|
||||
|
||||
|
||||
def test_pair_confusion_matrix_fully_dispersed():
|
||||
# edge case: every element is its own cluster
|
||||
N = 100
|
||||
clustering1 = list(range(N))
|
||||
clustering2 = clustering1
|
||||
expected = np.array([[N * (N - 1), 0], [0, 0]])
|
||||
assert_array_equal(pair_confusion_matrix(clustering1, clustering2), expected)
|
||||
|
||||
|
||||
def test_pair_confusion_matrix_single_cluster():
|
||||
# edge case: only one cluster
|
||||
N = 100
|
||||
clustering1 = np.zeros((N,))
|
||||
clustering2 = clustering1
|
||||
expected = np.array([[0, 0], [0, N * (N - 1)]])
|
||||
assert_array_equal(pair_confusion_matrix(clustering1, clustering2), expected)
|
||||
|
||||
|
||||
def test_pair_confusion_matrix():
|
||||
# regular case: different non-trivial clusterings
|
||||
n = 10
|
||||
N = n**2
|
||||
clustering1 = np.hstack([[i + 1] * n for i in range(n)])
|
||||
clustering2 = np.hstack([[i + 1] * (n + 1) for i in range(n)])[:N]
|
||||
# basic quadratic implementation
|
||||
expected = np.zeros(shape=(2, 2), dtype=np.int64)
|
||||
for i in range(len(clustering1)):
|
||||
for j in range(len(clustering2)):
|
||||
if i != j:
|
||||
same_cluster_1 = int(clustering1[i] == clustering1[j])
|
||||
same_cluster_2 = int(clustering2[i] == clustering2[j])
|
||||
expected[same_cluster_1, same_cluster_2] += 1
|
||||
assert_array_equal(pair_confusion_matrix(clustering1, clustering2), expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"clustering1, clustering2",
|
||||
[(list(range(100)), list(range(100))), (np.zeros((100,)), np.zeros((100,)))],
|
||||
)
|
||||
def test_rand_score_edge_cases(clustering1, clustering2):
|
||||
# edge case 1: every element is its own cluster
|
||||
# edge case 2: only one cluster
|
||||
assert_allclose(rand_score(clustering1, clustering2), 1.0)
|
||||
|
||||
|
||||
def test_rand_score():
|
||||
# regular case: different non-trivial clusterings
|
||||
clustering1 = [0, 0, 0, 1, 1, 1]
|
||||
clustering2 = [0, 1, 0, 1, 2, 2]
|
||||
# pair confusion matrix
|
||||
D11 = 2 * 2 # ordered pairs (1, 3), (5, 6)
|
||||
D10 = 2 * 4 # ordered pairs (1, 2), (2, 3), (4, 5), (4, 6)
|
||||
D01 = 2 * 1 # ordered pair (2, 4)
|
||||
D00 = 5 * 6 - D11 - D01 - D10 # the remaining pairs
|
||||
# rand score
|
||||
expected_numerator = D00 + D11
|
||||
expected_denominator = D00 + D01 + D10 + D11
|
||||
expected = expected_numerator / expected_denominator
|
||||
assert_allclose(rand_score(clustering1, clustering2), expected)
|
||||
|
||||
|
||||
def test_adjusted_rand_score_overflow():
|
||||
"""Check that large amount of data will not lead to overflow in
|
||||
`adjusted_rand_score`.
|
||||
Non-regression test for:
|
||||
https://github.com/scikit-learn/scikit-learn/issues/20305
|
||||
"""
|
||||
rng = np.random.RandomState(0)
|
||||
y_true = rng.randint(0, 2, 100_000, dtype=np.int8)
|
||||
y_pred = rng.randint(0, 2, 100_000, dtype=np.int8)
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("error", RuntimeWarning)
|
||||
adjusted_rand_score(y_true, y_pred)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("average_method", ["min", "arithmetic", "geometric", "max"])
|
||||
def test_normalized_mutual_info_score_bounded(average_method):
|
||||
"""Check that nmi returns a score between 0 (included) and 1 (excluded
|
||||
for non-perfect match)
|
||||
|
||||
Non-regression test for issue #13836
|
||||
"""
|
||||
labels1 = [0] * 469
|
||||
labels2 = [1] + labels1[1:]
|
||||
labels3 = [0, 1] + labels1[2:]
|
||||
|
||||
# labels1 is constant. The mutual info between labels1 and any other labelling is 0.
|
||||
nmi = normalized_mutual_info_score(labels1, labels2, average_method=average_method)
|
||||
assert nmi == 0
|
||||
|
||||
# non constant, non perfect matching labels
|
||||
nmi = normalized_mutual_info_score(labels2, labels3, average_method=average_method)
|
||||
assert 0 <= nmi < 1
|
||||
@ -0,0 +1,413 @@
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpy.testing import assert_allclose
|
||||
from scipy.sparse import issparse
|
||||
|
||||
from sklearn import datasets
|
||||
from sklearn.metrics import pairwise_distances
|
||||
from sklearn.metrics.cluster import (
|
||||
calinski_harabasz_score,
|
||||
davies_bouldin_score,
|
||||
silhouette_samples,
|
||||
silhouette_score,
|
||||
)
|
||||
from sklearn.metrics.cluster._unsupervised import _silhouette_reduce
|
||||
from sklearn.utils._testing import assert_array_equal
|
||||
from sklearn.utils.fixes import (
|
||||
CSC_CONTAINERS,
|
||||
CSR_CONTAINERS,
|
||||
DOK_CONTAINERS,
|
||||
LIL_CONTAINERS,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"sparse_container",
|
||||
[None] + CSR_CONTAINERS + CSC_CONTAINERS + DOK_CONTAINERS + LIL_CONTAINERS,
|
||||
)
|
||||
@pytest.mark.parametrize("sample_size", [None, "half"])
|
||||
def test_silhouette(sparse_container, sample_size):
|
||||
# Tests the Silhouette Coefficient.
|
||||
dataset = datasets.load_iris()
|
||||
X, y = dataset.data, dataset.target
|
||||
if sparse_container is not None:
|
||||
X = sparse_container(X)
|
||||
sample_size = int(X.shape[0] / 2) if sample_size == "half" else sample_size
|
||||
|
||||
D = pairwise_distances(X, metric="euclidean")
|
||||
# Given that the actual labels are used, we can assume that S would be positive.
|
||||
score_precomputed = silhouette_score(
|
||||
D, y, metric="precomputed", sample_size=sample_size, random_state=0
|
||||
)
|
||||
score_euclidean = silhouette_score(
|
||||
X, y, metric="euclidean", sample_size=sample_size, random_state=0
|
||||
)
|
||||
assert score_precomputed > 0
|
||||
assert score_euclidean > 0
|
||||
assert score_precomputed == pytest.approx(score_euclidean)
|
||||
|
||||
|
||||
def test_cluster_size_1():
|
||||
# Assert Silhouette Coefficient == 0 when there is 1 sample in a cluster
|
||||
# (cluster 0). We also test the case where there are identical samples
|
||||
# as the only members of a cluster (cluster 2). To our knowledge, this case
|
||||
# is not discussed in reference material, and we choose for it a sample
|
||||
# score of 1.
|
||||
X = [[0.0], [1.0], [1.0], [2.0], [3.0], [3.0]]
|
||||
labels = np.array([0, 1, 1, 1, 2, 2])
|
||||
|
||||
# Cluster 0: 1 sample -> score of 0 by Rousseeuw's convention
|
||||
# Cluster 1: intra-cluster = [.5, .5, 1]
|
||||
# inter-cluster = [1, 1, 1]
|
||||
# silhouette = [.5, .5, 0]
|
||||
# Cluster 2: intra-cluster = [0, 0]
|
||||
# inter-cluster = [arbitrary, arbitrary]
|
||||
# silhouette = [1., 1.]
|
||||
|
||||
silhouette = silhouette_score(X, labels)
|
||||
assert not np.isnan(silhouette)
|
||||
ss = silhouette_samples(X, labels)
|
||||
assert_array_equal(ss, [0, 0.5, 0.5, 0, 1, 1])
|
||||
|
||||
|
||||
def test_silhouette_paper_example():
|
||||
# Explicitly check per-sample results against Rousseeuw (1987)
|
||||
# Data from Table 1
|
||||
lower = [
|
||||
5.58,
|
||||
7.00,
|
||||
6.50,
|
||||
7.08,
|
||||
7.00,
|
||||
3.83,
|
||||
4.83,
|
||||
5.08,
|
||||
8.17,
|
||||
5.83,
|
||||
2.17,
|
||||
5.75,
|
||||
6.67,
|
||||
6.92,
|
||||
4.92,
|
||||
6.42,
|
||||
5.00,
|
||||
5.58,
|
||||
6.00,
|
||||
4.67,
|
||||
6.42,
|
||||
3.42,
|
||||
5.50,
|
||||
6.42,
|
||||
6.42,
|
||||
5.00,
|
||||
3.92,
|
||||
6.17,
|
||||
2.50,
|
||||
4.92,
|
||||
6.25,
|
||||
7.33,
|
||||
4.50,
|
||||
2.25,
|
||||
6.33,
|
||||
2.75,
|
||||
6.08,
|
||||
6.67,
|
||||
4.25,
|
||||
2.67,
|
||||
6.00,
|
||||
6.17,
|
||||
6.17,
|
||||
6.92,
|
||||
6.17,
|
||||
5.25,
|
||||
6.83,
|
||||
4.50,
|
||||
3.75,
|
||||
5.75,
|
||||
5.42,
|
||||
6.08,
|
||||
5.83,
|
||||
6.67,
|
||||
3.67,
|
||||
4.75,
|
||||
3.00,
|
||||
6.08,
|
||||
6.67,
|
||||
5.00,
|
||||
5.58,
|
||||
4.83,
|
||||
6.17,
|
||||
5.67,
|
||||
6.50,
|
||||
6.92,
|
||||
]
|
||||
D = np.zeros((12, 12))
|
||||
D[np.tril_indices(12, -1)] = lower
|
||||
D += D.T
|
||||
|
||||
names = [
|
||||
"BEL",
|
||||
"BRA",
|
||||
"CHI",
|
||||
"CUB",
|
||||
"EGY",
|
||||
"FRA",
|
||||
"IND",
|
||||
"ISR",
|
||||
"USA",
|
||||
"USS",
|
||||
"YUG",
|
||||
"ZAI",
|
||||
]
|
||||
|
||||
# Data from Figure 2
|
||||
labels1 = [1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1]
|
||||
expected1 = {
|
||||
"USA": 0.43,
|
||||
"BEL": 0.39,
|
||||
"FRA": 0.35,
|
||||
"ISR": 0.30,
|
||||
"BRA": 0.22,
|
||||
"EGY": 0.20,
|
||||
"ZAI": 0.19,
|
||||
"CUB": 0.40,
|
||||
"USS": 0.34,
|
||||
"CHI": 0.33,
|
||||
"YUG": 0.26,
|
||||
"IND": -0.04,
|
||||
}
|
||||
score1 = 0.28
|
||||
|
||||
# Data from Figure 3
|
||||
labels2 = [1, 2, 3, 3, 1, 1, 2, 1, 1, 3, 3, 2]
|
||||
expected2 = {
|
||||
"USA": 0.47,
|
||||
"FRA": 0.44,
|
||||
"BEL": 0.42,
|
||||
"ISR": 0.37,
|
||||
"EGY": 0.02,
|
||||
"ZAI": 0.28,
|
||||
"BRA": 0.25,
|
||||
"IND": 0.17,
|
||||
"CUB": 0.48,
|
||||
"USS": 0.44,
|
||||
"YUG": 0.31,
|
||||
"CHI": 0.31,
|
||||
}
|
||||
score2 = 0.33
|
||||
|
||||
for labels, expected, score in [
|
||||
(labels1, expected1, score1),
|
||||
(labels2, expected2, score2),
|
||||
]:
|
||||
expected = [expected[name] for name in names]
|
||||
# we check to 2dp because that's what's in the paper
|
||||
pytest.approx(
|
||||
expected,
|
||||
silhouette_samples(D, np.array(labels), metric="precomputed"),
|
||||
abs=1e-2,
|
||||
)
|
||||
pytest.approx(
|
||||
score, silhouette_score(D, np.array(labels), metric="precomputed"), abs=1e-2
|
||||
)
|
||||
|
||||
|
||||
def test_correct_labelsize():
|
||||
# Assert 1 < n_labels < n_samples
|
||||
dataset = datasets.load_iris()
|
||||
X = dataset.data
|
||||
|
||||
# n_labels = n_samples
|
||||
y = np.arange(X.shape[0])
|
||||
err_msg = (
|
||||
r"Number of labels is %d\. Valid values are 2 "
|
||||
r"to n_samples - 1 \(inclusive\)" % len(np.unique(y))
|
||||
)
|
||||
with pytest.raises(ValueError, match=err_msg):
|
||||
silhouette_score(X, y)
|
||||
|
||||
# n_labels = 1
|
||||
y = np.zeros(X.shape[0])
|
||||
err_msg = (
|
||||
r"Number of labels is %d\. Valid values are 2 "
|
||||
r"to n_samples - 1 \(inclusive\)" % len(np.unique(y))
|
||||
)
|
||||
with pytest.raises(ValueError, match=err_msg):
|
||||
silhouette_score(X, y)
|
||||
|
||||
|
||||
def test_non_encoded_labels():
|
||||
dataset = datasets.load_iris()
|
||||
X = dataset.data
|
||||
labels = dataset.target
|
||||
assert silhouette_score(X, labels * 2 + 10) == silhouette_score(X, labels)
|
||||
assert_array_equal(
|
||||
silhouette_samples(X, labels * 2 + 10), silhouette_samples(X, labels)
|
||||
)
|
||||
|
||||
|
||||
def test_non_numpy_labels():
|
||||
dataset = datasets.load_iris()
|
||||
X = dataset.data
|
||||
y = dataset.target
|
||||
assert silhouette_score(list(X), list(y)) == silhouette_score(X, y)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dtype", (np.float32, np.float64))
|
||||
def test_silhouette_nonzero_diag(dtype):
|
||||
# Make sure silhouette_samples requires diagonal to be zero.
|
||||
# Non-regression test for #12178
|
||||
|
||||
# Construct a zero-diagonal matrix
|
||||
dists = pairwise_distances(
|
||||
np.array([[0.2, 0.1, 0.12, 1.34, 1.11, 1.6]], dtype=dtype).T
|
||||
)
|
||||
labels = [0, 0, 0, 1, 1, 1]
|
||||
|
||||
# small values on the diagonal are OK
|
||||
dists[2][2] = np.finfo(dists.dtype).eps * 10
|
||||
silhouette_samples(dists, labels, metric="precomputed")
|
||||
|
||||
# values bigger than eps * 100 are not
|
||||
dists[2][2] = np.finfo(dists.dtype).eps * 1000
|
||||
with pytest.raises(ValueError, match="contains non-zero"):
|
||||
silhouette_samples(dists, labels, metric="precomputed")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"sparse_container",
|
||||
CSC_CONTAINERS + CSR_CONTAINERS + DOK_CONTAINERS + LIL_CONTAINERS,
|
||||
)
|
||||
def test_silhouette_samples_precomputed_sparse(sparse_container):
|
||||
"""Check that silhouette_samples works for sparse matrices correctly."""
|
||||
X = np.array([[0.2, 0.1, 0.1, 0.2, 0.1, 1.6, 0.2, 0.1]], dtype=np.float32).T
|
||||
y = [0, 0, 0, 0, 1, 1, 1, 1]
|
||||
pdist_dense = pairwise_distances(X)
|
||||
pdist_sparse = sparse_container(pdist_dense)
|
||||
assert issparse(pdist_sparse)
|
||||
output_with_sparse_input = silhouette_samples(pdist_sparse, y, metric="precomputed")
|
||||
output_with_dense_input = silhouette_samples(pdist_dense, y, metric="precomputed")
|
||||
assert_allclose(output_with_sparse_input, output_with_dense_input)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"sparse_container",
|
||||
CSC_CONTAINERS + CSR_CONTAINERS + DOK_CONTAINERS + LIL_CONTAINERS,
|
||||
)
|
||||
def test_silhouette_samples_euclidean_sparse(sparse_container):
|
||||
"""Check that silhouette_samples works for sparse matrices correctly."""
|
||||
X = np.array([[0.2, 0.1, 0.1, 0.2, 0.1, 1.6, 0.2, 0.1]], dtype=np.float32).T
|
||||
y = [0, 0, 0, 0, 1, 1, 1, 1]
|
||||
pdist_dense = pairwise_distances(X)
|
||||
pdist_sparse = sparse_container(pdist_dense)
|
||||
assert issparse(pdist_sparse)
|
||||
output_with_sparse_input = silhouette_samples(pdist_sparse, y)
|
||||
output_with_dense_input = silhouette_samples(pdist_dense, y)
|
||||
assert_allclose(output_with_sparse_input, output_with_dense_input)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"sparse_container", CSC_CONTAINERS + DOK_CONTAINERS + LIL_CONTAINERS
|
||||
)
|
||||
def test_silhouette_reduce(sparse_container):
|
||||
"""Check for non-CSR input to private method `_silhouette_reduce`."""
|
||||
X = np.array([[0.2, 0.1, 0.1, 0.2, 0.1, 1.6, 0.2, 0.1]], dtype=np.float32).T
|
||||
pdist_dense = pairwise_distances(X)
|
||||
pdist_sparse = sparse_container(pdist_dense)
|
||||
y = [0, 0, 0, 0, 1, 1, 1, 1]
|
||||
label_freqs = np.bincount(y)
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match="Expected CSR matrix. Please pass sparse matrix in CSR format.",
|
||||
):
|
||||
_silhouette_reduce(pdist_sparse, start=0, labels=y, label_freqs=label_freqs)
|
||||
|
||||
|
||||
def assert_raises_on_only_one_label(func):
|
||||
"""Assert message when there is only one label"""
|
||||
rng = np.random.RandomState(seed=0)
|
||||
with pytest.raises(ValueError, match="Number of labels is"):
|
||||
func(rng.rand(10, 2), np.zeros(10))
|
||||
|
||||
|
||||
def assert_raises_on_all_points_same_cluster(func):
|
||||
"""Assert message when all point are in different clusters"""
|
||||
rng = np.random.RandomState(seed=0)
|
||||
with pytest.raises(ValueError, match="Number of labels is"):
|
||||
func(rng.rand(10, 2), np.arange(10))
|
||||
|
||||
|
||||
def test_calinski_harabasz_score():
|
||||
assert_raises_on_only_one_label(calinski_harabasz_score)
|
||||
|
||||
assert_raises_on_all_points_same_cluster(calinski_harabasz_score)
|
||||
|
||||
# Assert the value is 1. when all samples are equals
|
||||
assert 1.0 == calinski_harabasz_score(np.ones((10, 2)), [0] * 5 + [1] * 5)
|
||||
|
||||
# Assert the value is 0. when all the mean cluster are equal
|
||||
assert 0.0 == calinski_harabasz_score([[-1, -1], [1, 1]] * 10, [0] * 10 + [1] * 10)
|
||||
|
||||
# General case (with non numpy arrays)
|
||||
X = (
|
||||
[[0, 0], [1, 1]] * 5
|
||||
+ [[3, 3], [4, 4]] * 5
|
||||
+ [[0, 4], [1, 3]] * 5
|
||||
+ [[3, 1], [4, 0]] * 5
|
||||
)
|
||||
labels = [0] * 10 + [1] * 10 + [2] * 10 + [3] * 10
|
||||
pytest.approx(calinski_harabasz_score(X, labels), 45 * (40 - 4) / (5 * (4 - 1)))
|
||||
|
||||
|
||||
def test_davies_bouldin_score():
|
||||
assert_raises_on_only_one_label(davies_bouldin_score)
|
||||
assert_raises_on_all_points_same_cluster(davies_bouldin_score)
|
||||
|
||||
# Assert the value is 0. when all samples are equals
|
||||
assert davies_bouldin_score(np.ones((10, 2)), [0] * 5 + [1] * 5) == pytest.approx(
|
||||
0.0
|
||||
)
|
||||
|
||||
# Assert the value is 0. when all the mean cluster are equal
|
||||
assert davies_bouldin_score(
|
||||
[[-1, -1], [1, 1]] * 10, [0] * 10 + [1] * 10
|
||||
) == pytest.approx(0.0)
|
||||
|
||||
# General case (with non numpy arrays)
|
||||
X = (
|
||||
[[0, 0], [1, 1]] * 5
|
||||
+ [[3, 3], [4, 4]] * 5
|
||||
+ [[0, 4], [1, 3]] * 5
|
||||
+ [[3, 1], [4, 0]] * 5
|
||||
)
|
||||
labels = [0] * 10 + [1] * 10 + [2] * 10 + [3] * 10
|
||||
pytest.approx(davies_bouldin_score(X, labels), 2 * np.sqrt(0.5) / 3)
|
||||
|
||||
# Ensure divide by zero warning is not raised in general case
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("error", RuntimeWarning)
|
||||
davies_bouldin_score(X, labels)
|
||||
|
||||
# General case - cluster have one sample
|
||||
X = [[0, 0], [2, 2], [3, 3], [5, 5]]
|
||||
labels = [0, 0, 1, 2]
|
||||
pytest.approx(davies_bouldin_score(X, labels), (5.0 / 4) / 3)
|
||||
|
||||
|
||||
def test_silhouette_score_integer_precomputed():
|
||||
"""Check that silhouette_score works for precomputed metrics that are integers.
|
||||
|
||||
Non-regression test for #22107.
|
||||
"""
|
||||
result = silhouette_score(
|
||||
[[0, 1, 2], [1, 0, 1], [2, 1, 0]], [0, 0, 1], metric="precomputed"
|
||||
)
|
||||
assert result == pytest.approx(1 / 6)
|
||||
|
||||
# non-zero on diagonal for ints raises an error
|
||||
with pytest.raises(ValueError, match="contains non-zero"):
|
||||
silhouette_score(
|
||||
[[1, 1, 2], [1, 0, 1], [2, 1, 0]], [0, 0, 1], metric="precomputed"
|
||||
)
|
||||
Reference in New Issue
Block a user