reconnect moved files to git repo
This commit is contained in:
95
venv/lib/python3.11/site-packages/sklearn/svm/_bounds.py
Normal file
95
venv/lib/python3.11/site-packages/sklearn/svm/_bounds.py
Normal file
@ -0,0 +1,95 @@
|
||||
"""Determination of parameter bounds"""
|
||||
|
||||
# Author: Paolo Losi
|
||||
# License: BSD 3 clause
|
||||
|
||||
from numbers import Real
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..preprocessing import LabelBinarizer
|
||||
from ..utils._param_validation import Interval, StrOptions, validate_params
|
||||
from ..utils.extmath import safe_sparse_dot
|
||||
from ..utils.validation import check_array, check_consistent_length
|
||||
|
||||
|
||||
@validate_params(
|
||||
{
|
||||
"X": ["array-like", "sparse matrix"],
|
||||
"y": ["array-like"],
|
||||
"loss": [StrOptions({"squared_hinge", "log"})],
|
||||
"fit_intercept": ["boolean"],
|
||||
"intercept_scaling": [Interval(Real, 0, None, closed="neither")],
|
||||
},
|
||||
prefer_skip_nested_validation=True,
|
||||
)
|
||||
def l1_min_c(X, y, *, loss="squared_hinge", fit_intercept=True, intercept_scaling=1.0):
|
||||
"""Return the lowest bound for C.
|
||||
|
||||
The lower bound for C is computed such that for C in (l1_min_C, infinity)
|
||||
the model is guaranteed not to be empty. This applies to l1 penalized
|
||||
classifiers, such as LinearSVC with penalty='l1' and
|
||||
linear_model.LogisticRegression with penalty='l1'.
|
||||
|
||||
This value is valid if class_weight parameter in fit() is not set.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
Training vector, where `n_samples` is the number of samples and
|
||||
`n_features` is the number of features.
|
||||
|
||||
y : array-like of shape (n_samples,)
|
||||
Target vector relative to X.
|
||||
|
||||
loss : {'squared_hinge', 'log'}, default='squared_hinge'
|
||||
Specifies the loss function.
|
||||
With 'squared_hinge' it is the squared hinge loss (a.k.a. L2 loss).
|
||||
With 'log' it is the loss of logistic regression models.
|
||||
|
||||
fit_intercept : bool, default=True
|
||||
Specifies if the intercept should be fitted by the model.
|
||||
It must match the fit() method parameter.
|
||||
|
||||
intercept_scaling : float, default=1.0
|
||||
When fit_intercept is True, instance vector x becomes
|
||||
[x, intercept_scaling],
|
||||
i.e. a "synthetic" feature with constant value equals to
|
||||
intercept_scaling is appended to the instance vector.
|
||||
It must match the fit() method parameter.
|
||||
|
||||
Returns
|
||||
-------
|
||||
l1_min_c : float
|
||||
Minimum value for C.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.svm import l1_min_c
|
||||
>>> from sklearn.datasets import make_classification
|
||||
>>> X, y = make_classification(n_samples=100, n_features=20, random_state=42)
|
||||
>>> print(f"{l1_min_c(X, y, loss='squared_hinge', fit_intercept=True):.4f}")
|
||||
0.0044
|
||||
"""
|
||||
|
||||
X = check_array(X, accept_sparse="csc")
|
||||
check_consistent_length(X, y)
|
||||
|
||||
Y = LabelBinarizer(neg_label=-1).fit_transform(y).T
|
||||
# maximum absolute value over classes and features
|
||||
den = np.max(np.abs(safe_sparse_dot(Y, X)))
|
||||
if fit_intercept:
|
||||
bias = np.full(
|
||||
(np.size(y), 1), intercept_scaling, dtype=np.array(intercept_scaling).dtype
|
||||
)
|
||||
den = max(den, abs(np.dot(Y, bias)).max())
|
||||
|
||||
if den == 0.0:
|
||||
raise ValueError(
|
||||
"Ill-posed l1_min_c calculation: l1 will always "
|
||||
"select zero coefficients for this data"
|
||||
)
|
||||
if loss == "squared_hinge":
|
||||
return 0.5 / den
|
||||
else: # loss == 'log':
|
||||
return 2.0 / den
|
||||
Reference in New Issue
Block a user