reconnect moved files to git repo
This commit is contained in:
@ -0,0 +1,163 @@
|
||||
"""Utilities for meta-estimators."""
|
||||
|
||||
# Author: Joel Nothman
|
||||
# Andreas Mueller
|
||||
# License: BSD
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from contextlib import suppress
|
||||
from typing import Any, List
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..base import BaseEstimator
|
||||
from ..utils import _safe_indexing
|
||||
from ..utils._tags import _safe_tags
|
||||
from ._available_if import available_if
|
||||
|
||||
__all__ = ["available_if"]
|
||||
|
||||
|
||||
class _BaseComposition(BaseEstimator, metaclass=ABCMeta):
|
||||
"""Handles parameter management for classifiers composed of named estimators."""
|
||||
|
||||
steps: List[Any]
|
||||
|
||||
@abstractmethod
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def _get_params(self, attr, deep=True):
|
||||
out = super().get_params(deep=deep)
|
||||
if not deep:
|
||||
return out
|
||||
|
||||
estimators = getattr(self, attr)
|
||||
try:
|
||||
out.update(estimators)
|
||||
except (TypeError, ValueError):
|
||||
# Ignore TypeError for cases where estimators is not a list of
|
||||
# (name, estimator) and ignore ValueError when the list is not
|
||||
# formatted correctly. This is to prevent errors when calling
|
||||
# `set_params`. `BaseEstimator.set_params` calls `get_params` which
|
||||
# can error for invalid values for `estimators`.
|
||||
return out
|
||||
|
||||
for name, estimator in estimators:
|
||||
if hasattr(estimator, "get_params"):
|
||||
for key, value in estimator.get_params(deep=True).items():
|
||||
out["%s__%s" % (name, key)] = value
|
||||
return out
|
||||
|
||||
def _set_params(self, attr, **params):
|
||||
# Ensure strict ordering of parameter setting:
|
||||
# 1. All steps
|
||||
if attr in params:
|
||||
setattr(self, attr, params.pop(attr))
|
||||
# 2. Replace items with estimators in params
|
||||
items = getattr(self, attr)
|
||||
if isinstance(items, list) and items:
|
||||
# Get item names used to identify valid names in params
|
||||
# `zip` raises a TypeError when `items` does not contains
|
||||
# elements of length 2
|
||||
with suppress(TypeError):
|
||||
item_names, _ = zip(*items)
|
||||
for name in list(params.keys()):
|
||||
if "__" not in name and name in item_names:
|
||||
self._replace_estimator(attr, name, params.pop(name))
|
||||
|
||||
# 3. Step parameters and other initialisation arguments
|
||||
super().set_params(**params)
|
||||
return self
|
||||
|
||||
def _replace_estimator(self, attr, name, new_val):
|
||||
# assumes `name` is a valid estimator name
|
||||
new_estimators = list(getattr(self, attr))
|
||||
for i, (estimator_name, _) in enumerate(new_estimators):
|
||||
if estimator_name == name:
|
||||
new_estimators[i] = (name, new_val)
|
||||
break
|
||||
setattr(self, attr, new_estimators)
|
||||
|
||||
def _validate_names(self, names):
|
||||
if len(set(names)) != len(names):
|
||||
raise ValueError("Names provided are not unique: {0!r}".format(list(names)))
|
||||
invalid_names = set(names).intersection(self.get_params(deep=False))
|
||||
if invalid_names:
|
||||
raise ValueError(
|
||||
"Estimator names conflict with constructor arguments: {0!r}".format(
|
||||
sorted(invalid_names)
|
||||
)
|
||||
)
|
||||
invalid_names = [name for name in names if "__" in name]
|
||||
if invalid_names:
|
||||
raise ValueError(
|
||||
"Estimator names must not contain __: got {0!r}".format(invalid_names)
|
||||
)
|
||||
|
||||
|
||||
def _safe_split(estimator, X, y, indices, train_indices=None):
|
||||
"""Create subset of dataset and properly handle kernels.
|
||||
|
||||
Slice X, y according to indices for cross-validation, but take care of
|
||||
precomputed kernel-matrices or pairwise affinities / distances.
|
||||
|
||||
If ``estimator._pairwise is True``, X needs to be square and
|
||||
we slice rows and columns. If ``train_indices`` is not None,
|
||||
we slice rows using ``indices`` (assumed the test set) and columns
|
||||
using ``train_indices``, indicating the training set.
|
||||
|
||||
Labels y will always be indexed only along the first axis.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
estimator : object
|
||||
Estimator to determine whether we should slice only rows or rows and
|
||||
columns.
|
||||
|
||||
X : array-like, sparse matrix or iterable
|
||||
Data to be indexed. If ``estimator._pairwise is True``,
|
||||
this needs to be a square array-like or sparse matrix.
|
||||
|
||||
y : array-like, sparse matrix or iterable
|
||||
Targets to be indexed.
|
||||
|
||||
indices : array of int
|
||||
Rows to select from X and y.
|
||||
If ``estimator._pairwise is True`` and ``train_indices is None``
|
||||
then ``indices`` will also be used to slice columns.
|
||||
|
||||
train_indices : array of int or None, default=None
|
||||
If ``estimator._pairwise is True`` and ``train_indices is not None``,
|
||||
then ``train_indices`` will be use to slice the columns of X.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_subset : array-like, sparse matrix or list
|
||||
Indexed data.
|
||||
|
||||
y_subset : array-like, sparse matrix or list
|
||||
Indexed targets.
|
||||
|
||||
"""
|
||||
if _safe_tags(estimator, key="pairwise"):
|
||||
if not hasattr(X, "shape"):
|
||||
raise ValueError(
|
||||
"Precomputed kernels or affinity matrices have "
|
||||
"to be passed as arrays or sparse matrices."
|
||||
)
|
||||
# X is a precomputed square kernel matrix
|
||||
if X.shape[0] != X.shape[1]:
|
||||
raise ValueError("X should be a square kernel matrix")
|
||||
if train_indices is None:
|
||||
X_subset = X[np.ix_(indices, indices)]
|
||||
else:
|
||||
X_subset = X[np.ix_(indices, train_indices)]
|
||||
else:
|
||||
X_subset = _safe_indexing(X, indices)
|
||||
|
||||
if y is not None:
|
||||
y_subset = _safe_indexing(y, indices)
|
||||
else:
|
||||
y_subset = None
|
||||
|
||||
return X_subset, y_subset
|
||||
Reference in New Issue
Block a user