reconnect moved files to git repo
This commit is contained in:
@ -0,0 +1,519 @@
|
||||
"""
|
||||
|
||||
Which Archimedean is Best?
|
||||
Extreme Value copulas formulas are based on Genest 2009
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
Genest, C., 2009. Rank-based inference for bivariate extreme-value
|
||||
copulas. The Annals of Statistics, 37(5), pp.2990-3022.
|
||||
|
||||
"""
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
|
||||
from statsmodels.graphics import utils
|
||||
|
||||
|
||||
class CopulaDistribution:
|
||||
"""Multivariate copula distribution
|
||||
|
||||
Parameters
|
||||
----------
|
||||
copula : :class:`Copula` instance
|
||||
An instance of :class:`Copula`, e.g. :class:`GaussianCopula`,
|
||||
:class:`FrankCopula`, etc.
|
||||
marginals : list of distribution instances
|
||||
Marginal distributions.
|
||||
copargs : tuple
|
||||
Parameters for copula
|
||||
|
||||
Notes
|
||||
-----
|
||||
Status: experimental, argument handling may still change
|
||||
|
||||
"""
|
||||
def __init__(self, copula, marginals, cop_args=()):
|
||||
|
||||
self.copula = copula
|
||||
|
||||
# no checking done on marginals
|
||||
self.marginals = marginals
|
||||
self.cop_args = cop_args
|
||||
self.k_vars = len(marginals)
|
||||
|
||||
def rvs(self, nobs=1, cop_args=None, marg_args=None, random_state=None):
|
||||
"""Draw `n` in the half-open interval ``[0, 1)``.
|
||||
|
||||
Sample the joint distribution.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nobs : int, optional
|
||||
Number of samples to generate in the parameter space.
|
||||
Default is 1.
|
||||
cop_args : tuple
|
||||
Copula parameters. If None, then the copula parameters will be
|
||||
taken from the ``cop_args`` attribute created when initiializing
|
||||
the instance.
|
||||
marg_args : list of tuples
|
||||
Parameters for the marginal distributions. It can be None if none
|
||||
of the marginal distributions have parameters, otherwise it needs
|
||||
to be a list of tuples with the same length has the number of
|
||||
marginal distributions. The list can contain empty tuples for
|
||||
marginal distributions that do not take parameter arguments.
|
||||
random_state : {None, int, numpy.random.Generator}, optional
|
||||
If `seed` is None then the legacy singleton NumPy generator.
|
||||
This will change after 0.13 to use a fresh NumPy ``Generator``,
|
||||
so you should explicitly pass a seeded ``Generator`` if you
|
||||
need reproducible results.
|
||||
If `seed` is an int, a new ``Generator`` instance is used,
|
||||
seeded with `seed`.
|
||||
If `seed` is already a ``Generator`` instance then that instance is
|
||||
used.
|
||||
|
||||
Returns
|
||||
-------
|
||||
sample : array_like (n, d)
|
||||
Sample from the joint distribution.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The random samples are generated by creating a sample with uniform
|
||||
margins from the copula, and using ``ppf`` to convert uniform margins
|
||||
to the one specified by the marginal distribution.
|
||||
|
||||
See Also
|
||||
--------
|
||||
statsmodels.tools.rng_qrng.check_random_state
|
||||
"""
|
||||
if cop_args is None:
|
||||
cop_args = self.cop_args
|
||||
if marg_args is None:
|
||||
marg_args = [()] * self.k_vars
|
||||
|
||||
sample = self.copula.rvs(nobs=nobs, args=cop_args,
|
||||
random_state=random_state)
|
||||
|
||||
for i, dist in enumerate(self.marginals):
|
||||
sample[:, i] = dist.ppf(0.5 + (1 - 1e-10) * (sample[:, i] - 0.5),
|
||||
*marg_args[i])
|
||||
return sample
|
||||
|
||||
def cdf(self, y, cop_args=None, marg_args=None):
|
||||
"""CDF of copula distribution.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : array_like
|
||||
Values of random variable at which to evaluate cdf.
|
||||
If 2-dimensional, then components of multivariate random variable
|
||||
need to be in columns
|
||||
cop_args : tuple
|
||||
Copula parameters. If None, then the copula parameters will be
|
||||
taken from the ``cop_args`` attribute created when initiializing
|
||||
the instance.
|
||||
marg_args : list of tuples
|
||||
Parameters for the marginal distributions. It can be None if none
|
||||
of the marginal distributions have parameters, otherwise it needs
|
||||
to be a list of tuples with the same length has the number of
|
||||
marginal distributions. The list can contain empty tuples for
|
||||
marginal distributions that do not take parameter arguments.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cdf values
|
||||
|
||||
"""
|
||||
y = np.asarray(y)
|
||||
if cop_args is None:
|
||||
cop_args = self.cop_args
|
||||
if marg_args is None:
|
||||
marg_args = [()] * y.shape[-1]
|
||||
|
||||
cdf_marg = []
|
||||
for i in range(self.k_vars):
|
||||
cdf_marg.append(self.marginals[i].cdf(y[..., i], *marg_args[i]))
|
||||
|
||||
u = np.column_stack(cdf_marg)
|
||||
if y.ndim == 1:
|
||||
u = u.squeeze()
|
||||
return self.copula.cdf(u, cop_args)
|
||||
|
||||
def pdf(self, y, cop_args=None, marg_args=None):
|
||||
"""PDF of copula distribution.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : array_like
|
||||
Values of random variable at which to evaluate cdf.
|
||||
If 2-dimensional, then components of multivariate random variable
|
||||
need to be in columns
|
||||
cop_args : tuple
|
||||
Copula parameters. If None, then the copula parameters will be
|
||||
taken from the ``cop_args`` attribute created when initiializing
|
||||
the instance.
|
||||
marg_args : list of tuples
|
||||
Parameters for the marginal distributions. It can be None if none
|
||||
of the marginal distributions have parameters, otherwise it needs
|
||||
to be a list of tuples with the same length has the number of
|
||||
marginal distributions. The list can contain empty tuples for
|
||||
marginal distributions that do not take parameter arguments.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pdf values
|
||||
"""
|
||||
return np.exp(self.logpdf(y, cop_args=cop_args, marg_args=marg_args))
|
||||
|
||||
def logpdf(self, y, cop_args=None, marg_args=None):
|
||||
"""Log-pdf of copula distribution.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : array_like
|
||||
Values of random variable at which to evaluate cdf.
|
||||
If 2-dimensional, then components of multivariate random variable
|
||||
need to be in columns
|
||||
cop_args : tuple
|
||||
Copula parameters. If None, then the copula parameters will be
|
||||
taken from the ``cop_args`` attribute creating when initiializing
|
||||
the instance.
|
||||
marg_args : list of tuples
|
||||
Parameters for the marginal distributions. It can be None if none
|
||||
of the marginal distributions have parameters, otherwise it needs
|
||||
to be a list of tuples with the same length has the number of
|
||||
marginal distributions. The list can contain empty tuples for
|
||||
marginal distributions that do not take parameter arguments.
|
||||
|
||||
Returns
|
||||
-------
|
||||
log-pdf values
|
||||
|
||||
"""
|
||||
y = np.asarray(y)
|
||||
if cop_args is None:
|
||||
cop_args = self.cop_args
|
||||
if marg_args is None:
|
||||
marg_args = tuple([()] * y.shape[-1])
|
||||
|
||||
lpdf = 0.0
|
||||
cdf_marg = []
|
||||
for i in range(self.k_vars):
|
||||
lpdf += self.marginals[i].logpdf(y[..., i], *marg_args[i])
|
||||
cdf_marg.append(self.marginals[i].cdf(y[..., i], *marg_args[i]))
|
||||
|
||||
u = np.column_stack(cdf_marg)
|
||||
if y.ndim == 1:
|
||||
u = u.squeeze()
|
||||
|
||||
lpdf += self.copula.logpdf(u, cop_args)
|
||||
return lpdf
|
||||
|
||||
|
||||
class Copula(ABC):
|
||||
r"""A generic Copula class meant for subclassing.
|
||||
|
||||
Notes
|
||||
-----
|
||||
A function :math:`\phi` on :math:`[0, \infty]` is the Laplace-Stieltjes
|
||||
transform of a distribution function if and only if :math:`\phi` is
|
||||
completely monotone and :math:`\phi(0) = 1` [2]_.
|
||||
|
||||
The following algorithm for sampling a ``d``-dimensional exchangeable
|
||||
Archimedean copula with generator :math:`\phi` is due to Marshall, Olkin
|
||||
(1988) [1]_, where :math:`LS^{−1}(\phi)` denotes the inverse
|
||||
Laplace-Stieltjes transform of :math:`\phi`.
|
||||
|
||||
From a mixture representation with respect to :math:`F`, the following
|
||||
algorithm may be derived for sampling Archimedean copulas, see [1]_.
|
||||
|
||||
1. Sample :math:`V \sim F = LS^{−1}(\phi)`.
|
||||
2. Sample i.i.d. :math:`X_i \sim U[0,1], i \in \{1,...,d\}`.
|
||||
3. Return:math:`(U_1,..., U_d)`, where :math:`U_i = \phi(−\log(X_i)/V), i
|
||||
\in \{1, ...,d\}`.
|
||||
|
||||
Detailed properties of each copula can be found in [3]_.
|
||||
|
||||
Instances of the class can access the attributes: ``rng`` for the random
|
||||
number generator (used for the ``seed``).
|
||||
|
||||
**Subclassing**
|
||||
|
||||
When subclassing `Copula` to create a new copula, ``__init__`` and
|
||||
``random`` must be redefined.
|
||||
|
||||
* ``__init__(theta)``: If the copula
|
||||
does not take advantage of a ``theta``, this parameter can be omitted.
|
||||
* ``random(n, random_state)``: draw ``n`` from the copula.
|
||||
* ``pdf(x)``: PDF from the copula.
|
||||
* ``cdf(x)``: CDF from the copula.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Marshall AW, Olkin I. “Families of Multivariate Distributions”,
|
||||
Journal of the American Statistical Association, 83, 834–841, 1988.
|
||||
.. [2] Marius Hofert. "Sampling Archimedean copulas",
|
||||
Universität Ulm, 2008.
|
||||
.. rvs[3] Harry Joe. "Dependence Modeling with Copulas", Monographs on
|
||||
Statistics and Applied Probability 134, 2015.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, k_dim=2):
|
||||
self.k_dim = k_dim
|
||||
|
||||
def rvs(self, nobs=1, args=(), random_state=None):
|
||||
"""Draw `n` in the half-open interval ``[0, 1)``.
|
||||
|
||||
Marginals are uniformly distributed.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nobs : int, optional
|
||||
Number of samples to generate from the copula. Default is 1.
|
||||
args : tuple
|
||||
Arguments for copula parameters. The number of arguments depends
|
||||
on the copula.
|
||||
random_state : {None, int, numpy.random.Generator}, optional
|
||||
If `seed` is None then the legacy singleton NumPy generator.
|
||||
This will change after 0.13 to use a fresh NumPy ``Generator``,
|
||||
so you should explicitly pass a seeded ``Generator`` if you
|
||||
need reproducible results.
|
||||
If `seed` is an int, a new ``Generator`` instance is used,
|
||||
seeded with `seed`.
|
||||
If `seed` is already a ``Generator`` instance then that instance is
|
||||
used.
|
||||
|
||||
Returns
|
||||
-------
|
||||
sample : array_like (nobs, d)
|
||||
Sample from the copula.
|
||||
|
||||
See Also
|
||||
--------
|
||||
statsmodels.tools.rng_qrng.check_random_state
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def pdf(self, u, args=()):
|
||||
"""Probability density function of copula.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
u : array_like, 2-D
|
||||
Points of random variables in unit hypercube at which method is
|
||||
evaluated.
|
||||
The second (or last) dimension should be the same as the dimension
|
||||
of the random variable, e.g. 2 for bivariate copula.
|
||||
args : tuple
|
||||
Arguments for copula parameters. The number of arguments depends
|
||||
on the copula.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pdf : ndarray, (nobs, k_dim)
|
||||
Copula pdf evaluated at points ``u``.
|
||||
"""
|
||||
|
||||
def logpdf(self, u, args=()):
|
||||
"""Log of copula pdf, loglikelihood.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
u : array_like, 2-D
|
||||
Points of random variables in unit hypercube at which method is
|
||||
evaluated.
|
||||
The second (or last) dimension should be the same as the dimension
|
||||
of the random variable, e.g. 2 for bivariate copula.
|
||||
args : tuple
|
||||
Arguments for copula parameters. The number of arguments depends
|
||||
on the copula.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cdf : ndarray, (nobs, k_dim)
|
||||
Copula log-pdf evaluated at points ``u``.
|
||||
"""
|
||||
return np.log(self.pdf(u, *args))
|
||||
|
||||
@abstractmethod
|
||||
def cdf(self, u, args=()):
|
||||
"""Cumulative distribution function evaluated at points u.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
u : array_like, 2-D
|
||||
Points of random variables in unit hypercube at which method is
|
||||
evaluated.
|
||||
The second (or last) dimension should be the same as the dimension
|
||||
of the random variable, e.g. 2 for bivariate copula.
|
||||
args : tuple
|
||||
Arguments for copula parameters. The number of arguments depends
|
||||
on the copula.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cdf : ndarray, (nobs, k_dim)
|
||||
Copula cdf evaluated at points ``u``.
|
||||
"""
|
||||
|
||||
def plot_scatter(self, sample=None, nobs=500, random_state=None, ax=None):
|
||||
"""Sample the copula and plot.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
sample : array-like, optional
|
||||
The sample to plot. If not provided (the default), a sample
|
||||
is generated.
|
||||
nobs : int, optional
|
||||
Number of samples to generate from the copula.
|
||||
random_state : {None, int, numpy.random.Generator}, optional
|
||||
If `seed` is None then the legacy singleton NumPy generator.
|
||||
This will change after 0.13 to use a fresh NumPy ``Generator``,
|
||||
so you should explicitly pass a seeded ``Generator`` if you
|
||||
need reproducible results.
|
||||
If `seed` is an int, a new ``Generator`` instance is used,
|
||||
seeded with `seed`.
|
||||
If `seed` is already a ``Generator`` instance then that instance is
|
||||
used.
|
||||
ax : AxesSubplot, optional
|
||||
If given, this subplot is used to plot in instead of a new figure
|
||||
being created.
|
||||
|
||||
Returns
|
||||
-------
|
||||
fig : Figure
|
||||
If `ax` is None, the created figure. Otherwise the figure to which
|
||||
`ax` is connected.
|
||||
sample : array_like (n, d)
|
||||
Sample from the copula.
|
||||
|
||||
See Also
|
||||
--------
|
||||
statsmodels.tools.rng_qrng.check_random_state
|
||||
"""
|
||||
if self.k_dim != 2:
|
||||
raise ValueError("Can only plot 2-dimensional Copula.")
|
||||
|
||||
if sample is None:
|
||||
sample = self.rvs(nobs=nobs, random_state=random_state)
|
||||
|
||||
fig, ax = utils.create_mpl_ax(ax)
|
||||
ax.scatter(sample[:, 0], sample[:, 1])
|
||||
ax.set_xlabel('u')
|
||||
ax.set_ylabel('v')
|
||||
|
||||
return fig, sample
|
||||
|
||||
def plot_pdf(self, ticks_nbr=10, ax=None):
|
||||
"""Plot the PDF.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ticks_nbr : int, optional
|
||||
Number of color isolines for the PDF. Default is 10.
|
||||
ax : AxesSubplot, optional
|
||||
If given, this subplot is used to plot in instead of a new figure
|
||||
being created.
|
||||
|
||||
Returns
|
||||
-------
|
||||
fig : Figure
|
||||
If `ax` is None, the created figure. Otherwise the figure to which
|
||||
`ax` is connected.
|
||||
|
||||
"""
|
||||
from matplotlib import pyplot as plt
|
||||
if self.k_dim != 2:
|
||||
import warnings
|
||||
warnings.warn("Plotting 2-dimensional Copula.")
|
||||
|
||||
n_samples = 100
|
||||
|
||||
eps = 1e-4
|
||||
uu, vv = np.meshgrid(np.linspace(eps, 1 - eps, n_samples),
|
||||
np.linspace(eps, 1 - eps, n_samples))
|
||||
points = np.vstack([uu.ravel(), vv.ravel()]).T
|
||||
|
||||
data = self.pdf(points).T.reshape(uu.shape)
|
||||
min_ = np.nanpercentile(data, 5)
|
||||
max_ = np.nanpercentile(data, 95)
|
||||
|
||||
fig, ax = utils.create_mpl_ax(ax)
|
||||
|
||||
vticks = np.linspace(min_, max_, num=ticks_nbr)
|
||||
range_cbar = [min_, max_]
|
||||
cs = ax.contourf(uu, vv, data, vticks,
|
||||
antialiased=True, vmin=range_cbar[0],
|
||||
vmax=range_cbar[1])
|
||||
|
||||
ax.set_xlabel("u")
|
||||
ax.set_ylabel("v")
|
||||
ax.set_xlim(0, 1)
|
||||
ax.set_ylim(0, 1)
|
||||
ax.set_aspect('equal')
|
||||
cbar = plt.colorbar(cs, ticks=vticks)
|
||||
cbar.set_label('p')
|
||||
fig.tight_layout()
|
||||
|
||||
return fig
|
||||
|
||||
def tau_simulated(self, nobs=1024, random_state=None):
|
||||
"""Kendall's tau based on simulated samples.
|
||||
|
||||
Returns
|
||||
-------
|
||||
tau : float
|
||||
Kendall's tau.
|
||||
|
||||
"""
|
||||
x = self.rvs(nobs, random_state=random_state)
|
||||
return stats.kendalltau(x[:, 0], x[:, 1])[0]
|
||||
|
||||
def fit_corr_param(self, data):
|
||||
"""Copula correlation parameter using Kendall's tau of sample data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : array_like
|
||||
Sample data used to fit `theta` using Kendall's tau.
|
||||
|
||||
Returns
|
||||
-------
|
||||
corr_param : float
|
||||
Correlation parameter of the copula, ``theta`` in Archimedean and
|
||||
pearson correlation in elliptical.
|
||||
If k_dim > 2, then average tau is used.
|
||||
"""
|
||||
x = np.asarray(data)
|
||||
|
||||
if x.shape[1] == 2:
|
||||
tau = stats.kendalltau(x[:, 0], x[:, 1])[0]
|
||||
else:
|
||||
k = self.k_dim
|
||||
taus = [stats.kendalltau(x[..., i], x[..., j])[0]
|
||||
for i in range(k) for j in range(i+1, k)]
|
||||
tau = np.mean(taus)
|
||||
return self._arg_from_tau(tau)
|
||||
|
||||
def _arg_from_tau(self, tau):
|
||||
"""Compute correlation parameter from tau.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
tau : float
|
||||
Kendall's tau.
|
||||
|
||||
Returns
|
||||
-------
|
||||
corr_param : float
|
||||
Correlation parameter of the copula, ``theta`` in Archimedean and
|
||||
pearson correlation in elliptical.
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
Reference in New Issue
Block a user