reconnect moved files to git repo
This commit is contained in:
@ -0,0 +1 @@
|
||||
# Init for results
|
||||
Binary file not shown.
Binary file not shown.
@ -0,0 +1,372 @@
|
||||
"""
|
||||
Results from Matlab and R
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
|
||||
class DescStatRes:
|
||||
"""
|
||||
|
||||
The results were generated from Bruce Hansen's
|
||||
MATLAb package:
|
||||
|
||||
Bruce E. Hansen
|
||||
Department of Economics
|
||||
Social Science Building
|
||||
University of Wisconsin
|
||||
Madison, WI 53706-1393
|
||||
bhansen@ssc.wisc.edu
|
||||
http://www.ssc.wisc.edu/~bhansen/
|
||||
|
||||
The R results are from Mai Zhou's emplik package
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.ci_mean = (13.556709, 14.559394)
|
||||
self.test_mean_14 = (.080675, .776385)
|
||||
self.test_mean_weights = np.array([[0.01969213],
|
||||
[0.01911859],
|
||||
[0.01973982],
|
||||
[0.01982913],
|
||||
[0.02004183],
|
||||
[0.0195765],
|
||||
[0.01970423],
|
||||
[0.02015074],
|
||||
[0.01898431],
|
||||
[0.02067787],
|
||||
[0.01878104],
|
||||
[0.01920531],
|
||||
[0.01981207],
|
||||
[0.02031582],
|
||||
[0.01857329],
|
||||
[0.01907883],
|
||||
[0.01943674],
|
||||
[0.0210042],
|
||||
[0.0197373],
|
||||
[0.01997998],
|
||||
[0.0199233],
|
||||
[0.01986713],
|
||||
[0.02017751],
|
||||
[0.01962176],
|
||||
[0.0214596],
|
||||
[0.02118228],
|
||||
[0.02013767],
|
||||
[0.01918665],
|
||||
[0.01908886],
|
||||
[0.01943081],
|
||||
[0.01916251],
|
||||
[0.01868129],
|
||||
[0.01918334],
|
||||
[0.01969084],
|
||||
[0.01984322],
|
||||
[0.0198977],
|
||||
[0.02098504],
|
||||
[0.02132222],
|
||||
[0.02100581],
|
||||
[0.01970351],
|
||||
[0.01942184],
|
||||
[0.01979781],
|
||||
[0.02114276],
|
||||
[0.02096136],
|
||||
[0.01999804],
|
||||
[0.02044712],
|
||||
[0.02174404],
|
||||
[0.02189933],
|
||||
[0.02077078],
|
||||
[0.02082612]]).squeeze()
|
||||
self.test_var_3 = (.199385, .655218)
|
||||
self.ci_var = (2.290077, 4.423634)
|
||||
self.test_var_weights = np.array([[0.020965],
|
||||
[0.019686],
|
||||
[0.021011],
|
||||
[0.021073],
|
||||
[0.021089],
|
||||
[0.020813],
|
||||
[0.020977],
|
||||
[0.021028],
|
||||
[0.019213],
|
||||
[0.02017],
|
||||
[0.018397],
|
||||
[0.01996],
|
||||
[0.021064],
|
||||
[0.020854],
|
||||
[0.017463],
|
||||
[0.019552],
|
||||
[0.020555],
|
||||
[0.019283],
|
||||
[0.021009],
|
||||
[0.021103],
|
||||
[0.021102],
|
||||
[0.021089],
|
||||
[0.021007],
|
||||
[0.020879],
|
||||
[0.017796],
|
||||
[0.018726],
|
||||
[0.021038],
|
||||
[0.019903],
|
||||
[0.019587],
|
||||
[0.020543],
|
||||
[0.019828],
|
||||
[0.017959],
|
||||
[0.019893],
|
||||
[0.020963],
|
||||
[0.02108],
|
||||
[0.021098],
|
||||
[0.01934],
|
||||
[0.018264],
|
||||
[0.019278],
|
||||
[0.020977],
|
||||
[0.020523],
|
||||
[0.021055],
|
||||
[0.018853],
|
||||
[0.019411],
|
||||
[0.0211],
|
||||
[0.02065],
|
||||
[0.016803],
|
||||
[0.016259],
|
||||
[0.019939],
|
||||
[0.019793]]).squeeze()
|
||||
self.mv_test_mean = (.7002663, .7045943)
|
||||
self.mv_test_mean_wts = np.array([[0.01877015],
|
||||
[0.01895746],
|
||||
[0.01817092],
|
||||
[0.01904308],
|
||||
[0.01707106],
|
||||
[0.01602806],
|
||||
[0.0194296],
|
||||
[0.01692204],
|
||||
[0.01978322],
|
||||
[0.01881313],
|
||||
[0.02011785],
|
||||
[0.0226274],
|
||||
[0.01953733],
|
||||
[0.01874346],
|
||||
[0.01694224],
|
||||
[0.01611816],
|
||||
[0.02297437],
|
||||
[0.01943187],
|
||||
[0.01899873],
|
||||
[0.02113375],
|
||||
[0.02295293],
|
||||
[0.02043509],
|
||||
[0.02276583],
|
||||
[0.02208274],
|
||||
[0.02466621],
|
||||
[0.02287983],
|
||||
[0.0173136],
|
||||
[0.01905693],
|
||||
[0.01909335],
|
||||
[0.01982534],
|
||||
[0.01924093],
|
||||
[0.0179352],
|
||||
[0.01871907],
|
||||
[0.01916633],
|
||||
[0.02022359],
|
||||
[0.02228696],
|
||||
[0.02080555],
|
||||
[0.01725214],
|
||||
[0.02166185],
|
||||
[0.01798537],
|
||||
[0.02103582],
|
||||
[0.02052757],
|
||||
[0.03096074],
|
||||
[0.01966538],
|
||||
[0.02201629],
|
||||
[0.02094854],
|
||||
[0.02127771],
|
||||
[0.01961964],
|
||||
[0.02023756],
|
||||
[0.01774807]]).squeeze()
|
||||
self.test_skew = (2.498418, .113961)
|
||||
self.test_skew_wts = np.array([[0.016698],
|
||||
[0.01564],
|
||||
[0.01701],
|
||||
[0.017675],
|
||||
[0.019673],
|
||||
[0.016071],
|
||||
[0.016774],
|
||||
[0.020902],
|
||||
[0.016397],
|
||||
[0.027359],
|
||||
[0.019136],
|
||||
[0.015419],
|
||||
[0.01754],
|
||||
[0.022965],
|
||||
[0.027203],
|
||||
[0.015805],
|
||||
[0.015565],
|
||||
[0.028518],
|
||||
[0.016992],
|
||||
[0.019034],
|
||||
[0.018489],
|
||||
[0.01799],
|
||||
[0.021222],
|
||||
[0.016294],
|
||||
[0.022725],
|
||||
[0.027133],
|
||||
[0.020748],
|
||||
[0.015452],
|
||||
[0.015759],
|
||||
[0.01555],
|
||||
[0.015506],
|
||||
[0.021863],
|
||||
[0.015459],
|
||||
[0.01669],
|
||||
[0.017789],
|
||||
[0.018257],
|
||||
[0.028578],
|
||||
[0.025151],
|
||||
[0.028512],
|
||||
[0.01677],
|
||||
[0.015529],
|
||||
[0.01743],
|
||||
[0.027563],
|
||||
[0.028629],
|
||||
[0.019216],
|
||||
[0.024677],
|
||||
[0.017376],
|
||||
[0.014739],
|
||||
[0.028112],
|
||||
[0.02842]]).squeeze()
|
||||
self.test_kurt_0 = (1.904269, .167601)
|
||||
self.test_corr = (.012025, .912680,)
|
||||
self.test_corr_weights = np.array([[0.020037],
|
||||
[0.020108],
|
||||
[0.020024],
|
||||
[0.02001],
|
||||
[0.019766],
|
||||
[0.019971],
|
||||
[0.020013],
|
||||
[0.019663],
|
||||
[0.019944],
|
||||
[0.01982],
|
||||
[0.01983],
|
||||
[0.019436],
|
||||
[0.020005],
|
||||
[0.019897],
|
||||
[0.020768],
|
||||
[0.020468],
|
||||
[0.019521],
|
||||
[0.019891],
|
||||
[0.020024],
|
||||
[0.01997],
|
||||
[0.019824],
|
||||
[0.019976],
|
||||
[0.019979],
|
||||
[0.019753],
|
||||
[0.020814],
|
||||
[0.020474],
|
||||
[0.019751],
|
||||
[0.020085],
|
||||
[0.020087],
|
||||
[0.019977],
|
||||
[0.020057],
|
||||
[0.020435],
|
||||
[0.020137],
|
||||
[0.020025],
|
||||
[0.019982],
|
||||
[0.019866],
|
||||
[0.020151],
|
||||
[0.019046],
|
||||
[0.020272],
|
||||
[0.020034],
|
||||
[0.019813],
|
||||
[0.01996],
|
||||
[0.020657],
|
||||
[0.019947],
|
||||
[0.019931],
|
||||
[0.02008],
|
||||
[0.02035],
|
||||
[0.019823],
|
||||
[0.02005],
|
||||
[0.019497]]).squeeze()
|
||||
self.test_joint_skew_kurt = (8.753952, .012563)
|
||||
|
||||
|
||||
class RegressionResults:
|
||||
"""
|
||||
Results for EL Regression
|
||||
"""
|
||||
def __init__(self):
|
||||
self.source = 'Matlab'
|
||||
self.test_beta0 = (1.758104, .184961, np.array([
|
||||
0.04326392, 0.04736749, 0.03573865, 0.04770535, 0.04721684,
|
||||
0.04718301, 0.07088816, 0.05631242, 0.04865098, 0.06572099,
|
||||
0.04016013, 0.04438627, 0.04042288, 0.03938043, 0.04006474,
|
||||
0.04845233, 0.01991985, 0.03623254, 0.03617999, 0.05607242,
|
||||
0.0886806]))
|
||||
|
||||
self.test_beta1 = (1.932529, .164482, np.array([
|
||||
0.033328, 0.051412, 0.03395, 0.071695, 0.046433, 0.041303,
|
||||
0.033329, 0.036413, 0.03246, 0.037776, 0.043872, 0.037507,
|
||||
0.04762, 0.04881, 0.05874, 0.049553, 0.048898, 0.04512,
|
||||
0.041142, 0.048121, 0.11252]))
|
||||
|
||||
self.test_beta2 = (.494593, .481866, np.array([
|
||||
0.046287, 0.048632, 0.048772, 0.034769, 0.048416, 0.052447,
|
||||
0.053336, 0.050112, 0.056053, 0.049318, 0.053609, 0.055634,
|
||||
0.042188, 0.046519, 0.048415, 0.047897, 0.048673, 0.047695,
|
||||
0.047503, 0.047447, 0.026279]))
|
||||
|
||||
self.test_beta3 = (3.537250, .060005, np.array([
|
||||
0.036327, 0.070483, 0.048965, 0.087399, 0.041685, 0.036221,
|
||||
0.016752, 0.019585, 0.027467, 0.02957, 0.069204, 0.060167,
|
||||
0.060189, 0.030007, 0.067371, 0.046862, 0.069814, 0.053041,
|
||||
0.053362, 0.041585, 0.033943]))
|
||||
|
||||
self.test_ci_beta0 = (-52.77128837058528, -24.11607348661947)
|
||||
|
||||
self.test_ci_beta1 = (0.41969831751229664, 0.9857167306604057)
|
||||
|
||||
self.test_ci_beta2 = (0.6012045929381431, 2.1847079367275692)
|
||||
|
||||
self.test_ci_beta3 = (-0.3804313225443794, 0.006934528877337928)
|
||||
|
||||
|
||||
class ANOVAResults:
|
||||
"""
|
||||
Results for ANOVA
|
||||
"""
|
||||
def __init__(self):
|
||||
self.source = 'Matlab'
|
||||
self.compute_ANOVA = (.426163, .51387, np.array([9.582371]), np.array([
|
||||
0.018494, 0.01943, 0.016624, 0.0172, 0.016985, 0.01922,
|
||||
0.016532, 0.015985, 0.016769, 0.017631, 0.017677, 0.017984,
|
||||
0.017049, 0.016721, 0.016382, 0.016566, 0.015642, 0.015894,
|
||||
0.016282, 0.015704, 0.016272, 0.015678, 0.015651, 0.015648,
|
||||
0.015618, 0.015726, 0.015981, 0.01635, 0.01586, 0.016443,
|
||||
0.016126, 0.01683, 0.01348, 0.017391, 0.011225, 0.017282,
|
||||
0.015568, 0.017543, 0.017009, 0.016325, 0.012841, 0.017648,
|
||||
0.01558, 0.015994, 0.017258, 0.017664, 0.017792, 0.017772,
|
||||
0.017527, 0.017797, 0.017856, 0.017849, 0.017749, 0.017827,
|
||||
0.017381, 0.017902, 0.016557, 0.015522, 0.017455, 0.017248]))
|
||||
|
||||
|
||||
class AFTRes:
|
||||
"""
|
||||
Results for the AFT model from package emplik in R written by Mai Zhou
|
||||
"""
|
||||
def __init__(self):
|
||||
self.test_params = np.array([3.77710799, -0.03281745])
|
||||
self.test_beta0 = (.132511, 0.7158323)
|
||||
self.test_beta1 = (.297951, .5851693)
|
||||
self.test_joint = (11.8068, 0.002730147)
|
||||
|
||||
|
||||
class OriginResults:
|
||||
"""
|
||||
These results are from Bruce Hansen's Matlab package.
|
||||
To replicate the results, the exogenous variables were scaled
|
||||
down by 10**-2 and the results were then rescaled.
|
||||
|
||||
These tests must also test likelihood functions because the
|
||||
llr when conducting hypothesis tests is the MLE while
|
||||
restricting the intercept to 0. Matlab's generic package always
|
||||
uses the unrestricted MLE.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.test_params = np.array([0, .00351861])
|
||||
self.test_llf = -1719.793173 # llf when testing param = .0034
|
||||
self.test_llf_hat = -1717.95833 # llf when origin=0
|
||||
self.test_llf_hypoth = -2*(self.test_llf-self.test_llf_hat)
|
||||
self.test_llf_conf = -1719.879077 # The likelihood func at conf_vals
|
||||
Reference in New Issue
Block a user