reconnect moved files to git repo

This commit is contained in:
root
2025-08-01 04:33:03 -04:00
commit 5d3c35492d
23190 changed files with 4750716 additions and 0 deletions

View File

@ -0,0 +1,396 @@
from collections import OrderedDict
import numpy as np
import pandas as pd
import pytest
from statsmodels.tools.validation import (
array_like,
PandasWrapper,
bool_like,
dict_like,
float_like,
int_like,
string_like,
)
from statsmodels.tools.validation.validation import _right_squeeze
@pytest.fixture(params=[True, False])
def use_pandas(request):
return request.param
def gen_data(dim, use_pandas):
if dim == 1:
out = np.empty(10,)
if use_pandas:
out = pd.Series(out)
elif dim == 2:
out = np.empty((20, 10))
if use_pandas:
out = pd.DataFrame(out)
else:
out = np.empty(np.arange(5, 5 + dim))
return out
class TestArrayLike:
def test_1d(self, use_pandas):
data = gen_data(1, use_pandas)
a = array_like(data, "a")
assert a.ndim == 1
assert a.shape == (10,)
assert type(a) is np.ndarray
a = array_like(data, "a", ndim=1)
assert a.ndim == 1
a = array_like(data, "a", shape=(10,))
assert a.shape == (10,)
a = array_like(data, "a", ndim=1, shape=(None,))
assert a.ndim == 1
a = array_like(data, "a", ndim=2, shape=(10, 1))
assert a.ndim == 2
assert a.shape == (10, 1)
with pytest.raises(ValueError, match="a is required to have shape"):
array_like(data, "a", shape=(5,))
def test_2d(self, use_pandas):
data = gen_data(2, use_pandas)
a = array_like(data, "a", ndim=2)
assert a.ndim == 2
assert a.shape == (20, 10)
assert type(a) is np.ndarray
a = array_like(data, "a", ndim=2)
assert a.ndim == 2
a = array_like(data, "a", ndim=2, shape=(20, None))
assert a.shape == (20, 10)
a = array_like(data, "a", ndim=2, shape=(20,))
assert a.shape == (20, 10)
a = array_like(data, "a", ndim=2, shape=(None, 10))
assert a.shape == (20, 10)
a = array_like(data, "a", ndim=2, shape=(None, None))
assert a.ndim == 2
a = array_like(data, "a", ndim=3)
assert a.ndim == 3
assert a.shape == (20, 10, 1)
with pytest.raises(ValueError, match="a is required to have shape"):
array_like(data, "a", ndim=2, shape=(10,))
with pytest.raises(ValueError, match="a is required to have shape"):
array_like(data, "a", ndim=2, shape=(20, 20))
with pytest.raises(ValueError, match="a is required to have shape"):
array_like(data, "a", ndim=2, shape=(None, 20))
match = "a is required to have ndim 1 but has ndim 2"
with pytest.raises(ValueError, match=match):
array_like(data, "a", ndim=1)
match = "a must have ndim <= 1"
with pytest.raises(ValueError, match=match):
array_like(data, "a", maxdim=1)
def test_3d(self):
data = gen_data(3, False)
a = array_like(data, "a", ndim=3)
assert a.shape == (5, 6, 7)
assert a.ndim == 3
assert type(a) is np.ndarray
a = array_like(data, "a", ndim=3, shape=(5, None, 7))
assert a.shape == (5, 6, 7)
a = array_like(data, "a", ndim=3, shape=(None, None, 7))
assert a.shape == (5, 6, 7)
a = array_like(data, "a", ndim=5)
assert a.shape == (5, 6, 7, 1, 1)
with pytest.raises(ValueError, match="a is required to have shape"):
array_like(data, "a", ndim=3, shape=(10,))
with pytest.raises(ValueError, match="a is required to have shape"):
array_like(data, "a", ndim=3, shape=(None, None, 5))
match = "a is required to have ndim 2 but has ndim 3"
with pytest.raises(ValueError, match=match):
array_like(data, "a", ndim=2)
match = "a must have ndim <= 1"
with pytest.raises(ValueError, match=match):
array_like(data, "a", maxdim=1)
match = "a must have ndim <= 2"
with pytest.raises(ValueError, match=match):
array_like(data, "a", maxdim=2)
def test_right_squeeze_and_pad(self):
data = np.empty((2, 1, 2))
a = array_like(data, "a", ndim=3)
assert a.shape == (2, 1, 2)
data = np.empty(2)
a = array_like(data, "a", ndim=3)
assert a.shape == (2, 1, 1)
data = np.empty((2, 1))
a = array_like(data, "a", ndim=3)
assert a.shape == (2, 1, 1)
data = np.empty((2, 1, 1, 1))
a = array_like(data, "a", ndim=3)
assert a.shape == (2, 1, 1)
data = np.empty((2, 1, 1, 2, 1, 1))
with pytest.raises(ValueError):
array_like(data, "a", ndim=3)
def test_contiguous(self):
x = np.arange(10)
y = x[::2]
a = array_like(y, "a", contiguous=True)
assert not y.flags["C_CONTIGUOUS"]
assert a.flags["C_CONTIGUOUS"]
def test_dtype(self):
x = np.arange(10)
a = array_like(x, "a", dtype=np.float32)
assert a.dtype == np.float32
a = array_like(x, "a", dtype=np.uint8)
assert a.dtype == np.uint8
@pytest.mark.xfail(reason="Failing for now")
def test_dot(self, use_pandas):
data = gen_data(2, use_pandas)
a = array_like(data, "a")
assert not isinstance(a.T.dot(data), array_like)
assert not isinstance(a.T.dot(a), array_like)
def test_slice(self, use_pandas):
data = gen_data(2, use_pandas)
a = array_like(data, "a", ndim=2)
assert type(a[1:]) is np.ndarray
def test_right_squeeze():
x = np.empty((10, 1, 10))
y = _right_squeeze(x)
assert y.shape == (10, 1, 10)
x = np.empty((10, 10, 1))
y = _right_squeeze(x)
assert y.shape == (10, 10)
x = np.empty((10, 10, 1, 1, 1, 1, 1))
y = _right_squeeze(x)
assert y.shape == (10, 10)
x = np.empty((10, 1, 10, 1, 1, 1, 1, 1))
y = _right_squeeze(x)
assert y.shape == (10, 1, 10)
def test_wrap_pandas(use_pandas):
a = gen_data(1, use_pandas)
b = gen_data(1, False)
wrapped = PandasWrapper(a).wrap(b)
expected_type = pd.Series if use_pandas else np.ndarray
assert isinstance(wrapped, expected_type)
assert not use_pandas or wrapped.name is None
wrapped = PandasWrapper(a).wrap(b, columns="name")
assert isinstance(wrapped, expected_type)
assert not use_pandas or wrapped.name == "name"
wrapped = PandasWrapper(a).wrap(b, columns=["name"])
assert isinstance(wrapped, expected_type)
assert not use_pandas or wrapped.name == "name"
expected_type = pd.DataFrame if use_pandas else np.ndarray
wrapped = PandasWrapper(a).wrap(b[:, None])
assert isinstance(wrapped, expected_type)
assert not use_pandas or wrapped.columns[0] == 0
wrapped = PandasWrapper(a).wrap(b[:, None], columns=["name"])
assert isinstance(wrapped, expected_type)
assert not use_pandas or wrapped.columns == ["name"]
if use_pandas:
match = "Can only wrap 1 or 2-d array_like"
with pytest.raises(ValueError, match=match):
PandasWrapper(a).wrap(b[:, None, None])
match = "obj must have the same number of elements in axis 0 as"
with pytest.raises(ValueError, match=match):
PandasWrapper(a).wrap(b[: b.shape[0] // 2])
def test_wrap_pandas_append():
a = gen_data(1, True)
a.name = "apple"
b = gen_data(1, False)
wrapped = PandasWrapper(a).wrap(b, append="appended")
expected = "apple_appended"
assert wrapped.name == expected
a = gen_data(2, True)
a.columns = ["apple_" + str(i) for i in range(a.shape[1])]
b = gen_data(2, False)
wrapped = PandasWrapper(a).wrap(b, append="appended")
expected = [c + "_appended" for c in a.columns]
assert list(wrapped.columns) == expected
def test_wrap_pandas_append_non_string():
# GH 6826
a = gen_data(1, True)
a.name = 7
b = gen_data(1, False)
wrapped = PandasWrapper(a).wrap(b, append="appended")
expected = "7_appended"
assert wrapped.name == expected
a = gen_data(2, True)
a.columns = [i for i in range(a.shape[1])]
b = gen_data(2, False)
wrapped = PandasWrapper(a).wrap(b, append="appended")
expected = [f"{c}_appended" for c in a.columns]
assert list(wrapped.columns) == expected
class CustomDict(dict):
pass
@pytest.fixture(params=(dict, OrderedDict, CustomDict, None))
def dict_type(request):
return request.param
def test_optional_dict_like(dict_type):
val = dict_type() if dict_type is not None else dict_type
out = dict_like(val, "value", optional=True)
assert isinstance(out, type(val))
def test_optional_dict_like_error():
match = r"value must be a dict or dict_like \(i.e., a Mapping\)"
with pytest.raises(TypeError, match=match):
dict_like([], "value", optional=True)
with pytest.raises(TypeError, match=match):
dict_like({"a"}, "value", optional=True)
with pytest.raises(TypeError, match=match):
dict_like("a", "value", optional=True)
def test_string():
out = string_like("apple", "value")
assert out == "apple"
out = string_like("apple", "value", options=("apple", "banana", "cherry"))
assert out == "apple"
with pytest.raises(TypeError, match="value must be a string"):
string_like(1, "value")
with pytest.raises(TypeError, match="value must be a string"):
string_like(b"4", "value")
with pytest.raises(
ValueError,
match="value must be one of: 'apple'," " 'banana', 'cherry'",
):
string_like("date", "value", options=("apple", "banana", "cherry"))
def test_optional_string():
out = string_like("apple", "value")
assert out == "apple"
out = string_like("apple", "value", options=("apple", "banana", "cherry"))
assert out == "apple"
out = string_like(None, "value", optional=True)
assert out is None
out = string_like(
None, "value", optional=True, options=("apple", "banana", "cherry")
)
assert out is None
with pytest.raises(TypeError, match="value must be a string"):
string_like(1, "value", optional=True)
with pytest.raises(TypeError, match="value must be a string"):
string_like(b"4", "value", optional=True)
@pytest.fixture(params=(1.0, 1.1, np.float32(1.2), np.array([1.2]), 1.2 + 0j))
def floating(request):
return request.param
@pytest.fixture(params=(np.empty(2), 1.2 + 1j, True, "3.2", None))
def not_floating(request):
return request.param
def test_float_like(floating):
assert isinstance(float_like(floating, "floating"), float)
assert isinstance(float_like(floating, "floating", optional=True), float)
assert float_like(None, "floating", optional=True) is None
if isinstance(floating, (int, np.integer, float, np.inexact)):
assert isinstance(float_like(floating, "floating", strict=True), float)
assert float_like(None, "floating", optional=True, strict=True) is None
def test_not_float_like(not_floating):
with pytest.raises(TypeError):
float_like(not_floating, "floating")
@pytest.fixture(params=(1.0, 2, np.float32(3.0), np.array([4.0])))
def integer(request):
return request.param
@pytest.fixture(
params=(
3.2,
np.float32(3.2),
3 + 2j,
complex(2.3 + 0j),
"apple",
1.0 + 0j,
np.timedelta64(2),
)
)
def not_integer(request):
return request.param
def test_int_like(integer):
assert isinstance(int_like(integer, "integer"), int)
assert isinstance(int_like(integer, "integer", optional=True), int)
assert int_like(None, "floating", optional=True) is None
if isinstance(integer, (int, np.integer)):
assert isinstance(int_like(integer, "integer", strict=True), int)
assert int_like(None, "floating", optional=True, strict=True) is None
def test_not_int_like(not_integer):
with pytest.raises(TypeError):
int_like(not_integer, "integer")
@pytest.fixture(params=[True, False, 1, 1.2, "a", ""])
def boolean(request):
return request.param
def test_bool_like(boolean):
assert isinstance(bool_like(boolean, "boolean"), bool)
assert bool_like(None, "boolean", optional=True) is None
if isinstance(boolean, bool):
assert isinstance(bool_like(boolean, "boolean", strict=True), bool)
else:
with pytest.raises(TypeError):
bool_like(boolean, "boolean", strict=True)
def test_not_bool_like():
with pytest.raises(TypeError):
bool_like(np.array([True, True]), boolean)