some new features
This commit is contained in:
199
.venv/lib/python3.12/site-packages/scipy/fft/_fftlog_backend.py
Normal file
199
.venv/lib/python3.12/site-packages/scipy/fft/_fftlog_backend.py
Normal file
@ -0,0 +1,199 @@
|
||||
import numpy as np
|
||||
from warnings import warn
|
||||
from ._basic import rfft, irfft
|
||||
from ..special import loggamma, poch
|
||||
|
||||
from scipy._lib._array_api import array_namespace, copy
|
||||
|
||||
__all__ = ['fht', 'ifht', 'fhtoffset']
|
||||
|
||||
# constants
|
||||
LN_2 = np.log(2)
|
||||
|
||||
|
||||
def fht(a, dln, mu, offset=0.0, bias=0.0):
|
||||
xp = array_namespace(a)
|
||||
a = xp.asarray(a)
|
||||
|
||||
# size of transform
|
||||
n = a.shape[-1]
|
||||
|
||||
# bias input array
|
||||
if bias != 0:
|
||||
# a_q(r) = a(r) (r/r_c)^{-q}
|
||||
j_c = (n-1)/2
|
||||
j = xp.arange(n, dtype=xp.float64)
|
||||
a = a * xp.exp(-bias*(j - j_c)*dln)
|
||||
|
||||
# compute FHT coefficients
|
||||
u = xp.asarray(fhtcoeff(n, dln, mu, offset=offset, bias=bias))
|
||||
|
||||
# transform
|
||||
A = _fhtq(a, u, xp=xp)
|
||||
|
||||
# bias output array
|
||||
if bias != 0:
|
||||
# A(k) = A_q(k) (k/k_c)^{-q} (k_c r_c)^{-q}
|
||||
A *= xp.exp(-bias*((j - j_c)*dln + offset))
|
||||
|
||||
return A
|
||||
|
||||
|
||||
def ifht(A, dln, mu, offset=0.0, bias=0.0):
|
||||
xp = array_namespace(A)
|
||||
A = xp.asarray(A)
|
||||
|
||||
# size of transform
|
||||
n = A.shape[-1]
|
||||
|
||||
# bias input array
|
||||
if bias != 0:
|
||||
# A_q(k) = A(k) (k/k_c)^{q} (k_c r_c)^{q}
|
||||
j_c = (n-1)/2
|
||||
j = xp.arange(n, dtype=xp.float64)
|
||||
A = A * xp.exp(bias*((j - j_c)*dln + offset))
|
||||
|
||||
# compute FHT coefficients
|
||||
u = xp.asarray(fhtcoeff(n, dln, mu, offset=offset, bias=bias, inverse=True))
|
||||
|
||||
# transform
|
||||
a = _fhtq(A, u, inverse=True, xp=xp)
|
||||
|
||||
# bias output array
|
||||
if bias != 0:
|
||||
# a(r) = a_q(r) (r/r_c)^{q}
|
||||
a /= xp.exp(-bias*(j - j_c)*dln)
|
||||
|
||||
return a
|
||||
|
||||
|
||||
def fhtcoeff(n, dln, mu, offset=0.0, bias=0.0, inverse=False):
|
||||
"""Compute the coefficient array for a fast Hankel transform."""
|
||||
lnkr, q = offset, bias
|
||||
|
||||
# Hankel transform coefficients
|
||||
# u_m = (kr)^{-i 2m pi/(n dlnr)} U_mu(q + i 2m pi/(n dlnr))
|
||||
# with U_mu(x) = 2^x Gamma((mu+1+x)/2)/Gamma((mu+1-x)/2)
|
||||
xp = (mu+1+q)/2
|
||||
xm = (mu+1-q)/2
|
||||
y = np.linspace(0, np.pi*(n//2)/(n*dln), n//2+1)
|
||||
u = np.empty(n//2+1, dtype=complex)
|
||||
v = np.empty(n//2+1, dtype=complex)
|
||||
u.imag[:] = y
|
||||
u.real[:] = xm
|
||||
loggamma(u, out=v)
|
||||
u.real[:] = xp
|
||||
loggamma(u, out=u)
|
||||
y *= 2*(LN_2 - lnkr)
|
||||
u.real -= v.real
|
||||
u.real += LN_2*q
|
||||
u.imag += v.imag
|
||||
u.imag += y
|
||||
np.exp(u, out=u)
|
||||
|
||||
# fix last coefficient to be real
|
||||
u.imag[-1] = 0
|
||||
|
||||
# deal with special cases
|
||||
if not np.isfinite(u[0]):
|
||||
# write u_0 = 2^q Gamma(xp)/Gamma(xm) = 2^q poch(xm, xp-xm)
|
||||
# poch() handles special cases for negative integers correctly
|
||||
u[0] = 2**q * poch(xm, xp-xm)
|
||||
# the coefficient may be inf or 0, meaning the transform or the
|
||||
# inverse transform, respectively, is singular
|
||||
|
||||
# check for singular transform or singular inverse transform
|
||||
if np.isinf(u[0]) and not inverse:
|
||||
warn('singular transform; consider changing the bias', stacklevel=3)
|
||||
# fix coefficient to obtain (potentially correct) transform anyway
|
||||
u = copy(u)
|
||||
u[0] = 0
|
||||
elif u[0] == 0 and inverse:
|
||||
warn('singular inverse transform; consider changing the bias', stacklevel=3)
|
||||
# fix coefficient to obtain (potentially correct) inverse anyway
|
||||
u = copy(u)
|
||||
u[0] = np.inf
|
||||
|
||||
return u
|
||||
|
||||
|
||||
def fhtoffset(dln, mu, initial=0.0, bias=0.0):
|
||||
"""Return optimal offset for a fast Hankel transform.
|
||||
|
||||
Returns an offset close to `initial` that fulfils the low-ringing
|
||||
condition of [1]_ for the fast Hankel transform `fht` with logarithmic
|
||||
spacing `dln`, order `mu` and bias `bias`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
dln : float
|
||||
Uniform logarithmic spacing of the transform.
|
||||
mu : float
|
||||
Order of the Hankel transform, any positive or negative real number.
|
||||
initial : float, optional
|
||||
Initial value for the offset. Returns the closest value that fulfils
|
||||
the low-ringing condition.
|
||||
bias : float, optional
|
||||
Exponent of power law bias, any positive or negative real number.
|
||||
|
||||
Returns
|
||||
-------
|
||||
offset : float
|
||||
Optimal offset of the uniform logarithmic spacing of the transform that
|
||||
fulfils a low-ringing condition.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.fft import fhtoffset
|
||||
>>> dln = 0.1
|
||||
>>> mu = 2.0
|
||||
>>> initial = 0.5
|
||||
>>> bias = 0.0
|
||||
>>> offset = fhtoffset(dln, mu, initial, bias)
|
||||
>>> offset
|
||||
0.5454581477676637
|
||||
|
||||
See Also
|
||||
--------
|
||||
fht : Definition of the fast Hankel transform.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191)
|
||||
|
||||
"""
|
||||
|
||||
lnkr, q = initial, bias
|
||||
|
||||
xp = (mu+1+q)/2
|
||||
xm = (mu+1-q)/2
|
||||
y = np.pi/(2*dln)
|
||||
zp = loggamma(xp + 1j*y)
|
||||
zm = loggamma(xm + 1j*y)
|
||||
arg = (LN_2 - lnkr)/dln + (zp.imag + zm.imag)/np.pi
|
||||
return lnkr + (arg - np.round(arg))*dln
|
||||
|
||||
|
||||
def _fhtq(a, u, inverse=False, *, xp=None):
|
||||
"""Compute the biased fast Hankel transform.
|
||||
|
||||
This is the basic FFTLog routine.
|
||||
"""
|
||||
if xp is None:
|
||||
xp = np
|
||||
|
||||
# size of transform
|
||||
n = a.shape[-1]
|
||||
|
||||
# biased fast Hankel transform via real FFT
|
||||
A = rfft(a, axis=-1)
|
||||
if not inverse:
|
||||
# forward transform
|
||||
A *= u
|
||||
else:
|
||||
# backward transform
|
||||
A /= xp.conj(u)
|
||||
A = irfft(A, n, axis=-1)
|
||||
A = xp.flip(A, axis=-1)
|
||||
|
||||
return A
|
||||
Reference in New Issue
Block a user