some new features
This commit is contained in:
864
.venv/lib/python3.12/site-packages/scipy/linalg/_matfuncs.py
Normal file
864
.venv/lib/python3.12/site-packages/scipy/linalg/_matfuncs.py
Normal file
@ -0,0 +1,864 @@
|
||||
#
|
||||
# Author: Travis Oliphant, March 2002
|
||||
#
|
||||
from itertools import product
|
||||
|
||||
import numpy as np
|
||||
from numpy import (dot, diag, prod, logical_not, ravel, transpose,
|
||||
conjugate, absolute, amax, sign, isfinite, triu)
|
||||
|
||||
# Local imports
|
||||
from scipy.linalg import LinAlgError, bandwidth
|
||||
from ._misc import norm
|
||||
from ._basic import solve, inv
|
||||
from ._decomp_svd import svd
|
||||
from ._decomp_schur import schur, rsf2csf
|
||||
from ._expm_frechet import expm_frechet, expm_cond
|
||||
from ._matfuncs_sqrtm import sqrtm
|
||||
from ._matfuncs_expm import pick_pade_structure, pade_UV_calc
|
||||
|
||||
__all__ = ['expm', 'cosm', 'sinm', 'tanm', 'coshm', 'sinhm', 'tanhm', 'logm',
|
||||
'funm', 'signm', 'sqrtm', 'fractional_matrix_power', 'expm_frechet',
|
||||
'expm_cond', 'khatri_rao']
|
||||
|
||||
eps = np.finfo('d').eps
|
||||
feps = np.finfo('f').eps
|
||||
|
||||
_array_precision = {'i': 1, 'l': 1, 'f': 0, 'd': 1, 'F': 0, 'D': 1}
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Utility functions.
|
||||
|
||||
|
||||
def _asarray_square(A):
|
||||
"""
|
||||
Wraps asarray with the extra requirement that the input be a square matrix.
|
||||
|
||||
The motivation is that the matfuncs module has real functions that have
|
||||
been lifted to square matrix functions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : array_like
|
||||
A square matrix.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray
|
||||
An ndarray copy or view or other representation of A.
|
||||
|
||||
"""
|
||||
A = np.asarray(A)
|
||||
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
|
||||
raise ValueError('expected square array_like input')
|
||||
return A
|
||||
|
||||
|
||||
def _maybe_real(A, B, tol=None):
|
||||
"""
|
||||
Return either B or the real part of B, depending on properties of A and B.
|
||||
|
||||
The motivation is that B has been computed as a complicated function of A,
|
||||
and B may be perturbed by negligible imaginary components.
|
||||
If A is real and B is complex with small imaginary components,
|
||||
then return a real copy of B. The assumption in that case would be that
|
||||
the imaginary components of B are numerical artifacts.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : ndarray
|
||||
Input array whose type is to be checked as real vs. complex.
|
||||
B : ndarray
|
||||
Array to be returned, possibly without its imaginary part.
|
||||
tol : float
|
||||
Absolute tolerance.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : real or complex array
|
||||
Either the input array B or only the real part of the input array B.
|
||||
|
||||
"""
|
||||
# Note that booleans and integers compare as real.
|
||||
if np.isrealobj(A) and np.iscomplexobj(B):
|
||||
if tol is None:
|
||||
tol = {0: feps*1e3, 1: eps*1e6}[_array_precision[B.dtype.char]]
|
||||
if np.allclose(B.imag, 0.0, atol=tol):
|
||||
B = B.real
|
||||
return B
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Matrix functions.
|
||||
|
||||
|
||||
def fractional_matrix_power(A, t):
|
||||
"""
|
||||
Compute the fractional power of a matrix.
|
||||
|
||||
Proceeds according to the discussion in section (6) of [1]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Matrix whose fractional power to evaluate.
|
||||
t : float
|
||||
Fractional power.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X : (N, N) array_like
|
||||
The fractional power of the matrix.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Nicholas J. Higham and Lijing lin (2011)
|
||||
"A Schur-Pade Algorithm for Fractional Powers of a Matrix."
|
||||
SIAM Journal on Matrix Analysis and Applications,
|
||||
32 (3). pp. 1056-1078. ISSN 0895-4798
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from scipy.linalg import fractional_matrix_power
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> b = fractional_matrix_power(a, 0.5)
|
||||
>>> b
|
||||
array([[ 0.75592895, 1.13389342],
|
||||
[ 0.37796447, 1.88982237]])
|
||||
>>> np.dot(b, b) # Verify square root
|
||||
array([[ 1., 3.],
|
||||
[ 1., 4.]])
|
||||
|
||||
"""
|
||||
# This fixes some issue with imports;
|
||||
# this function calls onenormest which is in scipy.sparse.
|
||||
A = _asarray_square(A)
|
||||
import scipy.linalg._matfuncs_inv_ssq
|
||||
return scipy.linalg._matfuncs_inv_ssq._fractional_matrix_power(A, t)
|
||||
|
||||
|
||||
def logm(A, disp=True):
|
||||
"""
|
||||
Compute matrix logarithm.
|
||||
|
||||
The matrix logarithm is the inverse of
|
||||
expm: expm(logm(`A`)) == `A`
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Matrix whose logarithm to evaluate
|
||||
disp : bool, optional
|
||||
Print warning if error in the result is estimated large
|
||||
instead of returning estimated error. (Default: True)
|
||||
|
||||
Returns
|
||||
-------
|
||||
logm : (N, N) ndarray
|
||||
Matrix logarithm of `A`
|
||||
errest : float
|
||||
(if disp == False)
|
||||
|
||||
1-norm of the estimated error, ||err||_1 / ||A||_1
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Awad H. Al-Mohy and Nicholas J. Higham (2012)
|
||||
"Improved Inverse Scaling and Squaring Algorithms
|
||||
for the Matrix Logarithm."
|
||||
SIAM Journal on Scientific Computing, 34 (4). C152-C169.
|
||||
ISSN 1095-7197
|
||||
|
||||
.. [2] Nicholas J. Higham (2008)
|
||||
"Functions of Matrices: Theory and Computation"
|
||||
ISBN 978-0-898716-46-7
|
||||
|
||||
.. [3] Nicholas J. Higham and Lijing lin (2011)
|
||||
"A Schur-Pade Algorithm for Fractional Powers of a Matrix."
|
||||
SIAM Journal on Matrix Analysis and Applications,
|
||||
32 (3). pp. 1056-1078. ISSN 0895-4798
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from scipy.linalg import logm, expm
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> b = logm(a)
|
||||
>>> b
|
||||
array([[-1.02571087, 2.05142174],
|
||||
[ 0.68380725, 1.02571087]])
|
||||
>>> expm(b) # Verify expm(logm(a)) returns a
|
||||
array([[ 1., 3.],
|
||||
[ 1., 4.]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
# Avoid circular import ... this is OK, right?
|
||||
import scipy.linalg._matfuncs_inv_ssq
|
||||
F = scipy.linalg._matfuncs_inv_ssq._logm(A)
|
||||
F = _maybe_real(A, F)
|
||||
errtol = 1000*eps
|
||||
# TODO use a better error approximation
|
||||
errest = norm(expm(F)-A, 1) / norm(A, 1)
|
||||
if disp:
|
||||
if not isfinite(errest) or errest >= errtol:
|
||||
print("logm result may be inaccurate, approximate err =", errest)
|
||||
return F
|
||||
else:
|
||||
return F, errest
|
||||
|
||||
|
||||
def expm(A):
|
||||
"""Compute the matrix exponential of an array.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : ndarray
|
||||
Input with last two dimensions are square ``(..., n, n)``.
|
||||
|
||||
Returns
|
||||
-------
|
||||
eA : ndarray
|
||||
The resulting matrix exponential with the same shape of ``A``
|
||||
|
||||
Notes
|
||||
-----
|
||||
Implements the algorithm given in [1], which is essentially a Pade
|
||||
approximation with a variable order that is decided based on the array
|
||||
data.
|
||||
|
||||
For input with size ``n``, the memory usage is in the worst case in the
|
||||
order of ``8*(n**2)``. If the input data is not of single and double
|
||||
precision of real and complex dtypes, it is copied to a new array.
|
||||
|
||||
For cases ``n >= 400``, the exact 1-norm computation cost, breaks even with
|
||||
1-norm estimation and from that point on the estimation scheme given in
|
||||
[2] is used to decide on the approximation order.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Awad H. Al-Mohy and Nicholas J. Higham, (2009), "A New Scaling
|
||||
and Squaring Algorithm for the Matrix Exponential", SIAM J. Matrix
|
||||
Anal. Appl. 31(3):970-989, :doi:`10.1137/09074721X`
|
||||
|
||||
.. [2] Nicholas J. Higham and Francoise Tisseur (2000), "A Block Algorithm
|
||||
for Matrix 1-Norm Estimation, with an Application to 1-Norm
|
||||
Pseudospectra." SIAM J. Matrix Anal. Appl. 21(4):1185-1201,
|
||||
:doi:`10.1137/S0895479899356080`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from scipy.linalg import expm, sinm, cosm
|
||||
|
||||
Matrix version of the formula exp(0) = 1:
|
||||
|
||||
>>> expm(np.zeros((3, 2, 2)))
|
||||
array([[[1., 0.],
|
||||
[0., 1.]],
|
||||
<BLANKLINE>
|
||||
[[1., 0.],
|
||||
[0., 1.]],
|
||||
<BLANKLINE>
|
||||
[[1., 0.],
|
||||
[0., 1.]]])
|
||||
|
||||
Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta))
|
||||
applied to a matrix:
|
||||
|
||||
>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
|
||||
>>> expm(1j*a)
|
||||
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
|
||||
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
|
||||
>>> cosm(a) + 1j*sinm(a)
|
||||
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
|
||||
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
|
||||
|
||||
"""
|
||||
a = np.asarray(A)
|
||||
if a.size == 1 and a.ndim < 2:
|
||||
return np.array([[np.exp(a.item())]])
|
||||
|
||||
if a.ndim < 2:
|
||||
raise LinAlgError('The input array must be at least two-dimensional')
|
||||
if a.shape[-1] != a.shape[-2]:
|
||||
raise LinAlgError('Last 2 dimensions of the array must be square')
|
||||
n = a.shape[-1]
|
||||
# Empty array
|
||||
if min(*a.shape) == 0:
|
||||
return np.empty_like(a)
|
||||
|
||||
# Scalar case
|
||||
if a.shape[-2:] == (1, 1):
|
||||
return np.exp(a)
|
||||
|
||||
if not np.issubdtype(a.dtype, np.inexact):
|
||||
a = a.astype(np.float64)
|
||||
elif a.dtype == np.float16:
|
||||
a = a.astype(np.float32)
|
||||
|
||||
# An explicit formula for 2x2 case exists (formula (2.2) in [1]). However, without
|
||||
# Kahan's method, numerical instabilities can occur (See gh-19584). Hence removed
|
||||
# here until we have a more stable implementation.
|
||||
|
||||
n = a.shape[-1]
|
||||
eA = np.empty(a.shape, dtype=a.dtype)
|
||||
# working memory to hold intermediate arrays
|
||||
Am = np.empty((5, n, n), dtype=a.dtype)
|
||||
|
||||
# Main loop to go through the slices of an ndarray and passing to expm
|
||||
for ind in product(*[range(x) for x in a.shape[:-2]]):
|
||||
aw = a[ind]
|
||||
|
||||
lu = bandwidth(aw)
|
||||
if not any(lu): # a is diagonal?
|
||||
eA[ind] = np.diag(np.exp(np.diag(aw)))
|
||||
continue
|
||||
|
||||
# Generic/triangular case; copy the slice into scratch and send.
|
||||
# Am will be mutated by pick_pade_structure
|
||||
Am[0, :, :] = aw
|
||||
m, s = pick_pade_structure(Am)
|
||||
|
||||
if s != 0: # scaling needed
|
||||
Am[:4] *= [[[2**(-s)]], [[4**(-s)]], [[16**(-s)]], [[64**(-s)]]]
|
||||
|
||||
pade_UV_calc(Am, n, m)
|
||||
eAw = Am[0]
|
||||
|
||||
if s != 0: # squaring needed
|
||||
|
||||
if (lu[1] == 0) or (lu[0] == 0): # lower/upper triangular
|
||||
# This branch implements Code Fragment 2.1 of [1]
|
||||
|
||||
diag_aw = np.diag(aw)
|
||||
# einsum returns a writable view
|
||||
np.einsum('ii->i', eAw)[:] = np.exp(diag_aw * 2**(-s))
|
||||
# super/sub diagonal
|
||||
sd = np.diag(aw, k=-1 if lu[1] == 0 else 1)
|
||||
|
||||
for i in range(s-1, -1, -1):
|
||||
eAw = eAw @ eAw
|
||||
|
||||
# diagonal
|
||||
np.einsum('ii->i', eAw)[:] = np.exp(diag_aw * 2.**(-i))
|
||||
exp_sd = _exp_sinch(diag_aw * (2.**(-i))) * (sd * 2**(-i))
|
||||
if lu[1] == 0: # lower
|
||||
np.einsum('ii->i', eAw[1:, :-1])[:] = exp_sd
|
||||
else: # upper
|
||||
np.einsum('ii->i', eAw[:-1, 1:])[:] = exp_sd
|
||||
|
||||
else: # generic
|
||||
for _ in range(s):
|
||||
eAw = eAw @ eAw
|
||||
|
||||
# Zero out the entries from np.empty in case of triangular input
|
||||
if (lu[0] == 0) or (lu[1] == 0):
|
||||
eA[ind] = np.triu(eAw) if lu[0] == 0 else np.tril(eAw)
|
||||
else:
|
||||
eA[ind] = eAw
|
||||
|
||||
return eA
|
||||
|
||||
|
||||
def _exp_sinch(x):
|
||||
# Higham's formula (10.42), might overflow, see GH-11839
|
||||
lexp_diff = np.diff(np.exp(x))
|
||||
l_diff = np.diff(x)
|
||||
mask_z = l_diff == 0.
|
||||
lexp_diff[~mask_z] /= l_diff[~mask_z]
|
||||
lexp_diff[mask_z] = np.exp(x[:-1][mask_z])
|
||||
return lexp_diff
|
||||
|
||||
|
||||
def cosm(A):
|
||||
"""
|
||||
Compute the matrix cosine.
|
||||
|
||||
This routine uses expm to compute the matrix exponentials.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Input array
|
||||
|
||||
Returns
|
||||
-------
|
||||
cosm : (N, N) ndarray
|
||||
Matrix cosine of A
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from scipy.linalg import expm, sinm, cosm
|
||||
|
||||
Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta))
|
||||
applied to a matrix:
|
||||
|
||||
>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
|
||||
>>> expm(1j*a)
|
||||
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
|
||||
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
|
||||
>>> cosm(a) + 1j*sinm(a)
|
||||
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
|
||||
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
if np.iscomplexobj(A):
|
||||
return 0.5*(expm(1j*A) + expm(-1j*A))
|
||||
else:
|
||||
return expm(1j*A).real
|
||||
|
||||
|
||||
def sinm(A):
|
||||
"""
|
||||
Compute the matrix sine.
|
||||
|
||||
This routine uses expm to compute the matrix exponentials.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Input array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
sinm : (N, N) ndarray
|
||||
Matrix sine of `A`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from scipy.linalg import expm, sinm, cosm
|
||||
|
||||
Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta))
|
||||
applied to a matrix:
|
||||
|
||||
>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
|
||||
>>> expm(1j*a)
|
||||
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
|
||||
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
|
||||
>>> cosm(a) + 1j*sinm(a)
|
||||
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
|
||||
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
if np.iscomplexobj(A):
|
||||
return -0.5j*(expm(1j*A) - expm(-1j*A))
|
||||
else:
|
||||
return expm(1j*A).imag
|
||||
|
||||
|
||||
def tanm(A):
|
||||
"""
|
||||
Compute the matrix tangent.
|
||||
|
||||
This routine uses expm to compute the matrix exponentials.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Input array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
tanm : (N, N) ndarray
|
||||
Matrix tangent of `A`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from scipy.linalg import tanm, sinm, cosm
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> t = tanm(a)
|
||||
>>> t
|
||||
array([[ -2.00876993, -8.41880636],
|
||||
[ -2.80626879, -10.42757629]])
|
||||
|
||||
Verify tanm(a) = sinm(a).dot(inv(cosm(a)))
|
||||
|
||||
>>> s = sinm(a)
|
||||
>>> c = cosm(a)
|
||||
>>> s.dot(np.linalg.inv(c))
|
||||
array([[ -2.00876993, -8.41880636],
|
||||
[ -2.80626879, -10.42757629]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
return _maybe_real(A, solve(cosm(A), sinm(A)))
|
||||
|
||||
|
||||
def coshm(A):
|
||||
"""
|
||||
Compute the hyperbolic matrix cosine.
|
||||
|
||||
This routine uses expm to compute the matrix exponentials.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Input array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
coshm : (N, N) ndarray
|
||||
Hyperbolic matrix cosine of `A`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from scipy.linalg import tanhm, sinhm, coshm
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> c = coshm(a)
|
||||
>>> c
|
||||
array([[ 11.24592233, 38.76236492],
|
||||
[ 12.92078831, 50.00828725]])
|
||||
|
||||
Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))
|
||||
|
||||
>>> t = tanhm(a)
|
||||
>>> s = sinhm(a)
|
||||
>>> t - s.dot(np.linalg.inv(c))
|
||||
array([[ 2.72004641e-15, 4.55191440e-15],
|
||||
[ 0.00000000e+00, -5.55111512e-16]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
return _maybe_real(A, 0.5 * (expm(A) + expm(-A)))
|
||||
|
||||
|
||||
def sinhm(A):
|
||||
"""
|
||||
Compute the hyperbolic matrix sine.
|
||||
|
||||
This routine uses expm to compute the matrix exponentials.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Input array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
sinhm : (N, N) ndarray
|
||||
Hyperbolic matrix sine of `A`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from scipy.linalg import tanhm, sinhm, coshm
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> s = sinhm(a)
|
||||
>>> s
|
||||
array([[ 10.57300653, 39.28826594],
|
||||
[ 13.09608865, 49.86127247]])
|
||||
|
||||
Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))
|
||||
|
||||
>>> t = tanhm(a)
|
||||
>>> c = coshm(a)
|
||||
>>> t - s.dot(np.linalg.inv(c))
|
||||
array([[ 2.72004641e-15, 4.55191440e-15],
|
||||
[ 0.00000000e+00, -5.55111512e-16]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
return _maybe_real(A, 0.5 * (expm(A) - expm(-A)))
|
||||
|
||||
|
||||
def tanhm(A):
|
||||
"""
|
||||
Compute the hyperbolic matrix tangent.
|
||||
|
||||
This routine uses expm to compute the matrix exponentials.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Input array
|
||||
|
||||
Returns
|
||||
-------
|
||||
tanhm : (N, N) ndarray
|
||||
Hyperbolic matrix tangent of `A`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from scipy.linalg import tanhm, sinhm, coshm
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> t = tanhm(a)
|
||||
>>> t
|
||||
array([[ 0.3428582 , 0.51987926],
|
||||
[ 0.17329309, 0.86273746]])
|
||||
|
||||
Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))
|
||||
|
||||
>>> s = sinhm(a)
|
||||
>>> c = coshm(a)
|
||||
>>> t - s.dot(np.linalg.inv(c))
|
||||
array([[ 2.72004641e-15, 4.55191440e-15],
|
||||
[ 0.00000000e+00, -5.55111512e-16]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
return _maybe_real(A, solve(coshm(A), sinhm(A)))
|
||||
|
||||
|
||||
def funm(A, func, disp=True):
|
||||
"""
|
||||
Evaluate a matrix function specified by a callable.
|
||||
|
||||
Returns the value of matrix-valued function ``f`` at `A`. The
|
||||
function ``f`` is an extension of the scalar-valued function `func`
|
||||
to matrices.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Matrix at which to evaluate the function
|
||||
func : callable
|
||||
Callable object that evaluates a scalar function f.
|
||||
Must be vectorized (eg. using vectorize).
|
||||
disp : bool, optional
|
||||
Print warning if error in the result is estimated large
|
||||
instead of returning estimated error. (Default: True)
|
||||
|
||||
Returns
|
||||
-------
|
||||
funm : (N, N) ndarray
|
||||
Value of the matrix function specified by func evaluated at `A`
|
||||
errest : float
|
||||
(if disp == False)
|
||||
|
||||
1-norm of the estimated error, ||err||_1 / ||A||_1
|
||||
|
||||
Notes
|
||||
-----
|
||||
This function implements the general algorithm based on Schur decomposition
|
||||
(Algorithm 9.1.1. in [1]_).
|
||||
|
||||
If the input matrix is known to be diagonalizable, then relying on the
|
||||
eigendecomposition is likely to be faster. For example, if your matrix is
|
||||
Hermitian, you can do
|
||||
|
||||
>>> from scipy.linalg import eigh
|
||||
>>> def funm_herm(a, func, check_finite=False):
|
||||
... w, v = eigh(a, check_finite=check_finite)
|
||||
... ## if you further know that your matrix is positive semidefinite,
|
||||
... ## you can optionally guard against precision errors by doing
|
||||
... # w = np.maximum(w, 0)
|
||||
... w = func(w)
|
||||
... return (v * w).dot(v.conj().T)
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Gene H. Golub, Charles F. van Loan, Matrix Computations 4th ed.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from scipy.linalg import funm
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> funm(a, lambda x: x*x)
|
||||
array([[ 4., 15.],
|
||||
[ 5., 19.]])
|
||||
>>> a.dot(a)
|
||||
array([[ 4., 15.],
|
||||
[ 5., 19.]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
# Perform Shur decomposition (lapack ?gees)
|
||||
T, Z = schur(A)
|
||||
T, Z = rsf2csf(T, Z)
|
||||
n, n = T.shape
|
||||
F = diag(func(diag(T))) # apply function to diagonal elements
|
||||
F = F.astype(T.dtype.char) # e.g., when F is real but T is complex
|
||||
|
||||
minden = abs(T[0, 0])
|
||||
|
||||
# implement Algorithm 11.1.1 from Golub and Van Loan
|
||||
# "matrix Computations."
|
||||
for p in range(1, n):
|
||||
for i in range(1, n-p+1):
|
||||
j = i + p
|
||||
s = T[i-1, j-1] * (F[j-1, j-1] - F[i-1, i-1])
|
||||
ksl = slice(i, j-1)
|
||||
val = dot(T[i-1, ksl], F[ksl, j-1]) - dot(F[i-1, ksl], T[ksl, j-1])
|
||||
s = s + val
|
||||
den = T[j-1, j-1] - T[i-1, i-1]
|
||||
if den != 0.0:
|
||||
s = s / den
|
||||
F[i-1, j-1] = s
|
||||
minden = min(minden, abs(den))
|
||||
|
||||
F = dot(dot(Z, F), transpose(conjugate(Z)))
|
||||
F = _maybe_real(A, F)
|
||||
|
||||
tol = {0: feps, 1: eps}[_array_precision[F.dtype.char]]
|
||||
if minden == 0.0:
|
||||
minden = tol
|
||||
err = min(1, max(tol, (tol/minden)*norm(triu(T, 1), 1)))
|
||||
if prod(ravel(logical_not(isfinite(F))), axis=0):
|
||||
err = np.inf
|
||||
if disp:
|
||||
if err > 1000*tol:
|
||||
print("funm result may be inaccurate, approximate err =", err)
|
||||
return F
|
||||
else:
|
||||
return F, err
|
||||
|
||||
|
||||
def signm(A, disp=True):
|
||||
"""
|
||||
Matrix sign function.
|
||||
|
||||
Extension of the scalar sign(x) to matrices.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Matrix at which to evaluate the sign function
|
||||
disp : bool, optional
|
||||
Print warning if error in the result is estimated large
|
||||
instead of returning estimated error. (Default: True)
|
||||
|
||||
Returns
|
||||
-------
|
||||
signm : (N, N) ndarray
|
||||
Value of the sign function at `A`
|
||||
errest : float
|
||||
(if disp == False)
|
||||
|
||||
1-norm of the estimated error, ||err||_1 / ||A||_1
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import signm, eigvals
|
||||
>>> a = [[1,2,3], [1,2,1], [1,1,1]]
|
||||
>>> eigvals(a)
|
||||
array([ 4.12488542+0.j, -0.76155718+0.j, 0.63667176+0.j])
|
||||
>>> eigvals(signm(a))
|
||||
array([-1.+0.j, 1.+0.j, 1.+0.j])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
|
||||
def rounded_sign(x):
|
||||
rx = np.real(x)
|
||||
if rx.dtype.char == 'f':
|
||||
c = 1e3*feps*amax(x)
|
||||
else:
|
||||
c = 1e3*eps*amax(x)
|
||||
return sign((absolute(rx) > c) * rx)
|
||||
result, errest = funm(A, rounded_sign, disp=0)
|
||||
errtol = {0: 1e3*feps, 1: 1e3*eps}[_array_precision[result.dtype.char]]
|
||||
if errest < errtol:
|
||||
return result
|
||||
|
||||
# Handle signm of defective matrices:
|
||||
|
||||
# See "E.D.Denman and J.Leyva-Ramos, Appl.Math.Comp.,
|
||||
# 8:237-250,1981" for how to improve the following (currently a
|
||||
# rather naive) iteration process:
|
||||
|
||||
# a = result # sometimes iteration converges faster but where??
|
||||
|
||||
# Shifting to avoid zero eigenvalues. How to ensure that shifting does
|
||||
# not change the spectrum too much?
|
||||
vals = svd(A, compute_uv=False)
|
||||
max_sv = np.amax(vals)
|
||||
# min_nonzero_sv = vals[(vals>max_sv*errtol).tolist().count(1)-1]
|
||||
# c = 0.5/min_nonzero_sv
|
||||
c = 0.5/max_sv
|
||||
S0 = A + c*np.identity(A.shape[0])
|
||||
prev_errest = errest
|
||||
for i in range(100):
|
||||
iS0 = inv(S0)
|
||||
S0 = 0.5*(S0 + iS0)
|
||||
Pp = 0.5*(dot(S0, S0)+S0)
|
||||
errest = norm(dot(Pp, Pp)-Pp, 1)
|
||||
if errest < errtol or prev_errest == errest:
|
||||
break
|
||||
prev_errest = errest
|
||||
if disp:
|
||||
if not isfinite(errest) or errest >= errtol:
|
||||
print("signm result may be inaccurate, approximate err =", errest)
|
||||
return S0
|
||||
else:
|
||||
return S0, errest
|
||||
|
||||
|
||||
def khatri_rao(a, b):
|
||||
r"""
|
||||
Khatri-rao product
|
||||
|
||||
A column-wise Kronecker product of two matrices
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (n, k) array_like
|
||||
Input array
|
||||
b : (m, k) array_like
|
||||
Input array
|
||||
|
||||
Returns
|
||||
-------
|
||||
c: (n*m, k) ndarray
|
||||
Khatri-rao product of `a` and `b`.
|
||||
|
||||
See Also
|
||||
--------
|
||||
kron : Kronecker product
|
||||
|
||||
Notes
|
||||
-----
|
||||
The mathematical definition of the Khatri-Rao product is:
|
||||
|
||||
.. math::
|
||||
|
||||
(A_{ij} \bigotimes B_{ij})_{ij}
|
||||
|
||||
which is the Kronecker product of every column of A and B, e.g.::
|
||||
|
||||
c = np.vstack([np.kron(a[:, k], b[:, k]) for k in range(b.shape[1])]).T
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from scipy import linalg
|
||||
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
|
||||
>>> b = np.array([[3, 4, 5], [6, 7, 8], [2, 3, 9]])
|
||||
>>> linalg.khatri_rao(a, b)
|
||||
array([[ 3, 8, 15],
|
||||
[ 6, 14, 24],
|
||||
[ 2, 6, 27],
|
||||
[12, 20, 30],
|
||||
[24, 35, 48],
|
||||
[ 8, 15, 54]])
|
||||
|
||||
"""
|
||||
a = np.asarray(a)
|
||||
b = np.asarray(b)
|
||||
|
||||
if not (a.ndim == 2 and b.ndim == 2):
|
||||
raise ValueError("The both arrays should be 2-dimensional.")
|
||||
|
||||
if not a.shape[1] == b.shape[1]:
|
||||
raise ValueError("The number of columns for both arrays "
|
||||
"should be equal.")
|
||||
|
||||
# accommodate empty arrays
|
||||
if a.size == 0 or b.size == 0:
|
||||
m = a.shape[0] * b.shape[0]
|
||||
n = a.shape[1]
|
||||
return np.empty_like(a, shape=(m, n))
|
||||
|
||||
# c = np.vstack([np.kron(a[:, k], b[:, k]) for k in range(b.shape[1])]).T
|
||||
c = a[..., :, np.newaxis, :] * b[..., np.newaxis, :, :]
|
||||
return c.reshape((-1,) + c.shape[2:])
|
||||
Reference in New Issue
Block a user