some new features

This commit is contained in:
ilgazca
2025-07-30 17:09:11 +03:00
parent db5d46760a
commit 8019bd3b7c
20616 changed files with 4375466 additions and 8 deletions

View File

@ -0,0 +1,171 @@
import math
import numpy as np
from scipy import special
from scipy.stats._qmc import primes_from_2_to
def _primes(n):
# Defined to facilitate comparison between translation and source
# In Matlab, primes(10.5) -> first four primes, primes(11.5) -> first five
return primes_from_2_to(math.ceil(n))
def _gaminv(a, b):
# Defined to facilitate comparison between translation and source
# Matlab's `gaminv` is like `special.gammaincinv` but args are reversed
return special.gammaincinv(b, a)
def _qsimvtv(m, nu, sigma, a, b, rng):
"""Estimates the multivariate t CDF using randomized QMC
Parameters
----------
m : int
The number of points
nu : float
Degrees of freedom
sigma : ndarray
A 2D positive semidefinite covariance matrix
a : ndarray
Lower integration limits
b : ndarray
Upper integration limits.
rng : Generator
Pseudorandom number generator
Returns
-------
p : float
The estimated CDF.
e : float
An absolute error estimate.
"""
# _qsimvtv is a Python translation of the Matlab function qsimvtv,
# semicolons and all.
#
# This function uses an algorithm given in the paper
# "Comparison of Methods for the Numerical Computation of
# Multivariate t Probabilities", in
# J. of Computational and Graphical Stat., 11(2002), pp. 950-971, by
# Alan Genz and Frank Bretz
#
# The primary references for the numerical integration are
# "On a Number-Theoretical Integration Method"
# H. Niederreiter, Aequationes Mathematicae, 8(1972), pp. 304-11.
# and
# "Randomization of Number Theoretic Methods for Multiple Integration"
# R. Cranley & T.N.L. Patterson, SIAM J Numer Anal, 13(1976), pp. 904-14.
#
# Alan Genz is the author of this function and following Matlab functions.
# Alan Genz, WSU Math, PO Box 643113, Pullman, WA 99164-3113
# Email : alangenz@wsu.edu
#
# Copyright (C) 2013, Alan Genz, All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. The contributor name(s) may not be used to endorse or promote
# products derived from this software without specific prior
# written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
# TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# Initialization
sn = max(1, math.sqrt(nu)); ch, az, bz = _chlrps(sigma, a/sn, b/sn)
n = len(sigma); N = 10; P = math.ceil(m/N); on = np.ones(P); p = 0; e = 0
ps = np.sqrt(_primes(5*n*math.log(n+4)/4)); q = ps[:, np.newaxis] # Richtmyer gens.
# Randomization loop for ns samples
c = None; dc = None
for S in range(N):
vp = on.copy(); s = np.zeros((n, P))
for i in range(n):
x = np.abs(2*np.mod(q[i]*np.arange(1, P+1) + rng.random(), 1)-1) # periodizing transform
if i == 0:
r = on
if nu > 0:
r = np.sqrt(2*_gaminv(x, nu/2))
else:
y = _Phinv(c + x*dc)
s[i:] += ch[i:, i-1:i] * y
si = s[i, :]; c = on.copy(); ai = az[i]*r - si; d = on.copy(); bi = bz[i]*r - si
c[ai <= -9] = 0; tl = abs(ai) < 9; c[tl] = _Phi(ai[tl])
d[bi <= -9] = 0; tl = abs(bi) < 9; d[tl] = _Phi(bi[tl])
dc = d - c; vp = vp * dc
d = (np.mean(vp) - p)/(S + 1); p = p + d; e = (S - 1)*e/(S + 1) + d**2
e = math.sqrt(e) # error estimate is 3 times std error with N samples.
return p, e
# Standard statistical normal distribution functions
def _Phi(z):
return special.ndtr(z)
def _Phinv(p):
return special.ndtri(p)
def _chlrps(R, a, b):
"""
Computes permuted and scaled lower Cholesky factor c for R which may be
singular, also permuting and scaling integration limit vectors a and b.
"""
ep = 1e-10 # singularity tolerance
eps = np.finfo(R.dtype).eps
n = len(R); c = R.copy(); ap = a.copy(); bp = b.copy(); d = np.sqrt(np.maximum(np.diag(c), 0))
for i in range(n):
if d[i] > 0:
c[:, i] /= d[i]; c[i, :] /= d[i]
ap[i] /= d[i]; bp[i] /= d[i]
y = np.zeros((n, 1)); sqtp = math.sqrt(2*math.pi)
for k in range(n):
im = k; ckk = 0; dem = 1; s = 0
for i in range(k, n):
if c[i, i] > eps:
cii = math.sqrt(max(c[i, i], 0))
if i > 0: s = c[i, :k] @ y[:k]
ai = (ap[i]-s)/cii; bi = (bp[i]-s)/cii; de = _Phi(bi)-_Phi(ai)
if de <= dem:
ckk = cii; dem = de; am = ai; bm = bi; im = i
if im > k:
ap[[im, k]] = ap[[k, im]]; bp[[im, k]] = bp[[k, im]]; c[im, im] = c[k, k]
t = c[im, :k].copy(); c[im, :k] = c[k, :k]; c[k, :k] = t
t = c[im+1:, im].copy(); c[im+1:, im] = c[im+1:, k]; c[im+1:, k] = t
t = c[k+1:im, k].copy(); c[k+1:im, k] = c[im, k+1:im].T; c[im, k+1:im] = t.T
if ckk > ep*(k+1):
c[k, k] = ckk; c[k, k+1:] = 0
for i in range(k+1, n):
c[i, k] = c[i, k]/ckk; c[i, k+1:i+1] = c[i, k+1:i+1] - c[i, k]*c[k+1:i+1, k].T
if abs(dem) > ep:
y[k] = (np.exp(-am**2/2) - np.exp(-bm**2/2)) / (sqtp*dem)
else:
y[k] = (am + bm) / 2
if am < -10:
y[k] = bm
elif bm > 10:
y[k] = am
c[k, :k+1] /= ckk; ap[k] /= ckk; bp[k] /= ckk
else:
c[k:, k] = 0; y[k] = (ap[k] + bp[k])/2
pass
return c, ap, bp

View File

@ -0,0 +1,607 @@
# DO NOT EDIT THIS FILE!
# This file was generated by the R script
# generate_fisher_exact_results_from_r.R
# The script was run with R version 3.6.2 (2019-12-12) at 2020-11-09 06:16:09
from collections import namedtuple
import numpy as np
Inf = np.inf
Parameters = namedtuple('Parameters',
['table', 'confidence_level', 'alternative'])
RResults = namedtuple('RResults',
['pvalue', 'conditional_odds_ratio',
'conditional_odds_ratio_ci'])
data = [
(Parameters(table=[[100, 2], [1000, 5]],
confidence_level=0.95,
alternative='two.sided'),
RResults(pvalue=0.1300759363430016,
conditional_odds_ratio=0.25055839934223,
conditional_odds_ratio_ci=(0.04035202926536294,
2.662846672960251))),
(Parameters(table=[[2, 7], [8, 2]],
confidence_level=0.95,
alternative='two.sided'),
RResults(pvalue=0.02301413756522116,
conditional_odds_ratio=0.0858623513573622,
conditional_odds_ratio_ci=(0.004668988338943325,
0.895792956493601))),
(Parameters(table=[[5, 1], [10, 10]],
confidence_level=0.95,
alternative='two.sided'),
RResults(pvalue=0.1973244147157191,
conditional_odds_ratio=4.725646047336587,
conditional_odds_ratio_ci=(0.4153910882532168,
259.2593661129417))),
(Parameters(table=[[5, 15], [20, 20]],
confidence_level=0.95,
alternative='two.sided'),
RResults(pvalue=0.09580440012477633,
conditional_odds_ratio=0.3394396617440851,
conditional_odds_ratio_ci=(0.08056337526385809,
1.22704788545557))),
(Parameters(table=[[5, 16], [16, 25]],
confidence_level=0.95,
alternative='two.sided'),
RResults(pvalue=0.2697004098849359,
conditional_odds_ratio=0.4937791394540491,
conditional_odds_ratio_ci=(0.1176691231650079,
1.787463657995973))),
(Parameters(table=[[10, 5], [10, 1]],
confidence_level=0.95,
alternative='two.sided'),
RResults(pvalue=0.1973244147157192,
conditional_odds_ratio=0.2116112781158479,
conditional_odds_ratio_ci=(0.003857141267422399,
2.407369893767229))),
(Parameters(table=[[10, 5], [10, 0]],
confidence_level=0.95,
alternative='two.sided'),
RResults(pvalue=0.06126482213438735,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
1.451643573543705))),
(Parameters(table=[[5, 0], [1, 4]],
confidence_level=0.95,
alternative='two.sided'),
RResults(pvalue=0.04761904761904762,
conditional_odds_ratio=Inf,
conditional_odds_ratio_ci=(1.024822256141754,
Inf))),
(Parameters(table=[[0, 5], [1, 4]],
confidence_level=0.95,
alternative='two.sided'),
RResults(pvalue=1,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
39.00054996869288))),
(Parameters(table=[[5, 1], [0, 4]],
confidence_level=0.95,
alternative='two.sided'),
RResults(pvalue=0.04761904761904761,
conditional_odds_ratio=Inf,
conditional_odds_ratio_ci=(1.024822256141754,
Inf))),
(Parameters(table=[[0, 1], [3, 2]],
confidence_level=0.95,
alternative='two.sided'),
RResults(pvalue=1,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
39.00054996869287))),
(Parameters(table=[[200, 7], [8, 300]],
confidence_level=0.95,
alternative='two.sided'),
RResults(pvalue=2.005657880389071e-122,
conditional_odds_ratio=977.7866978606228,
conditional_odds_ratio_ci=(349.2595113327733,
3630.382605689872))),
(Parameters(table=[[28, 21], [6, 1957]],
confidence_level=0.95,
alternative='two.sided'),
RResults(pvalue=5.728437460831947e-44,
conditional_odds_ratio=425.2403028434684,
conditional_odds_ratio_ci=(152.4166024390096,
1425.700792178893))),
(Parameters(table=[[190, 800], [200, 900]],
confidence_level=0.95,
alternative='two.sided'),
RResults(pvalue=0.574111858126088,
conditional_odds_ratio=1.068697577856801,
conditional_odds_ratio_ci=(0.8520462587912048,
1.340148950273938))),
(Parameters(table=[[100, 2], [1000, 5]],
confidence_level=0.99,
alternative='two.sided'),
RResults(pvalue=0.1300759363430016,
conditional_odds_ratio=0.25055839934223,
conditional_odds_ratio_ci=(0.02502345007115455,
6.304424772117853))),
(Parameters(table=[[2, 7], [8, 2]],
confidence_level=0.99,
alternative='two.sided'),
RResults(pvalue=0.02301413756522116,
conditional_odds_ratio=0.0858623513573622,
conditional_odds_ratio_ci=(0.001923034001462487,
1.53670836950172))),
(Parameters(table=[[5, 1], [10, 10]],
confidence_level=0.99,
alternative='two.sided'),
RResults(pvalue=0.1973244147157191,
conditional_odds_ratio=4.725646047336587,
conditional_odds_ratio_ci=(0.2397970951413721,
1291.342011095509))),
(Parameters(table=[[5, 15], [20, 20]],
confidence_level=0.99,
alternative='two.sided'),
RResults(pvalue=0.09580440012477633,
conditional_odds_ratio=0.3394396617440851,
conditional_odds_ratio_ci=(0.05127576113762925,
1.717176678806983))),
(Parameters(table=[[5, 16], [16, 25]],
confidence_level=0.99,
alternative='two.sided'),
RResults(pvalue=0.2697004098849359,
conditional_odds_ratio=0.4937791394540491,
conditional_odds_ratio_ci=(0.07498546954483619,
2.506969905199901))),
(Parameters(table=[[10, 5], [10, 1]],
confidence_level=0.99,
alternative='two.sided'),
RResults(pvalue=0.1973244147157192,
conditional_odds_ratio=0.2116112781158479,
conditional_odds_ratio_ci=(0.0007743881879531337,
4.170192301163831))),
(Parameters(table=[[10, 5], [10, 0]],
confidence_level=0.99,
alternative='two.sided'),
RResults(pvalue=0.06126482213438735,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
2.642491011905582))),
(Parameters(table=[[5, 0], [1, 4]],
confidence_level=0.99,
alternative='two.sided'),
RResults(pvalue=0.04761904761904762,
conditional_odds_ratio=Inf,
conditional_odds_ratio_ci=(0.496935393325443,
Inf))),
(Parameters(table=[[0, 5], [1, 4]],
confidence_level=0.99,
alternative='two.sided'),
RResults(pvalue=1,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
198.019801980198))),
(Parameters(table=[[5, 1], [0, 4]],
confidence_level=0.99,
alternative='two.sided'),
RResults(pvalue=0.04761904761904761,
conditional_odds_ratio=Inf,
conditional_odds_ratio_ci=(0.496935393325443,
Inf))),
(Parameters(table=[[0, 1], [3, 2]],
confidence_level=0.99,
alternative='two.sided'),
RResults(pvalue=1,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
198.019801980198))),
(Parameters(table=[[200, 7], [8, 300]],
confidence_level=0.99,
alternative='two.sided'),
RResults(pvalue=2.005657880389071e-122,
conditional_odds_ratio=977.7866978606228,
conditional_odds_ratio_ci=(270.0334165523604,
5461.333333326708))),
(Parameters(table=[[28, 21], [6, 1957]],
confidence_level=0.99,
alternative='two.sided'),
RResults(pvalue=5.728437460831947e-44,
conditional_odds_ratio=425.2403028434684,
conditional_odds_ratio_ci=(116.7944750275836,
1931.995993191814))),
(Parameters(table=[[190, 800], [200, 900]],
confidence_level=0.99,
alternative='two.sided'),
RResults(pvalue=0.574111858126088,
conditional_odds_ratio=1.068697577856801,
conditional_odds_ratio_ci=(0.7949398282935892,
1.436229679394333))),
(Parameters(table=[[100, 2], [1000, 5]],
confidence_level=0.95,
alternative='less'),
RResults(pvalue=0.1300759363430016,
conditional_odds_ratio=0.25055839934223,
conditional_odds_ratio_ci=(0,
1.797867027270803))),
(Parameters(table=[[2, 7], [8, 2]],
confidence_level=0.95,
alternative='less'),
RResults(pvalue=0.0185217259520665,
conditional_odds_ratio=0.0858623513573622,
conditional_odds_ratio_ci=(0,
0.6785254803404526))),
(Parameters(table=[[5, 1], [10, 10]],
confidence_level=0.95,
alternative='less'),
RResults(pvalue=0.9782608695652173,
conditional_odds_ratio=4.725646047336587,
conditional_odds_ratio_ci=(0,
127.8497388102893))),
(Parameters(table=[[5, 15], [20, 20]],
confidence_level=0.95,
alternative='less'),
RResults(pvalue=0.05625775074399956,
conditional_odds_ratio=0.3394396617440851,
conditional_odds_ratio_ci=(0,
1.032332939718425))),
(Parameters(table=[[5, 16], [16, 25]],
confidence_level=0.95,
alternative='less'),
RResults(pvalue=0.1808979350599346,
conditional_odds_ratio=0.4937791394540491,
conditional_odds_ratio_ci=(0,
1.502407513296985))),
(Parameters(table=[[10, 5], [10, 1]],
confidence_level=0.95,
alternative='less'),
RResults(pvalue=0.1652173913043479,
conditional_odds_ratio=0.2116112781158479,
conditional_odds_ratio_ci=(0,
1.820421051562392))),
(Parameters(table=[[10, 5], [10, 0]],
confidence_level=0.95,
alternative='less'),
RResults(pvalue=0.0565217391304348,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
1.06224603077045))),
(Parameters(table=[[5, 0], [1, 4]],
confidence_level=0.95,
alternative='less'),
RResults(pvalue=1,
conditional_odds_ratio=Inf,
conditional_odds_ratio_ci=(0,
Inf))),
(Parameters(table=[[0, 5], [1, 4]],
confidence_level=0.95,
alternative='less'),
RResults(pvalue=0.5,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
19.00192394479939))),
(Parameters(table=[[5, 1], [0, 4]],
confidence_level=0.95,
alternative='less'),
RResults(pvalue=1,
conditional_odds_ratio=Inf,
conditional_odds_ratio_ci=(0,
Inf))),
(Parameters(table=[[0, 1], [3, 2]],
confidence_level=0.95,
alternative='less'),
RResults(pvalue=0.4999999999999999,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
19.00192394479939))),
(Parameters(table=[[200, 7], [8, 300]],
confidence_level=0.95,
alternative='less'),
RResults(pvalue=1,
conditional_odds_ratio=977.7866978606228,
conditional_odds_ratio_ci=(0,
3045.460216525746))),
(Parameters(table=[[28, 21], [6, 1957]],
confidence_level=0.95,
alternative='less'),
RResults(pvalue=1,
conditional_odds_ratio=425.2403028434684,
conditional_odds_ratio_ci=(0,
1186.440170942579))),
(Parameters(table=[[190, 800], [200, 900]],
confidence_level=0.95,
alternative='less'),
RResults(pvalue=0.7416227010368963,
conditional_odds_ratio=1.068697577856801,
conditional_odds_ratio_ci=(0,
1.293551891610822))),
(Parameters(table=[[100, 2], [1000, 5]],
confidence_level=0.99,
alternative='less'),
RResults(pvalue=0.1300759363430016,
conditional_odds_ratio=0.25055839934223,
conditional_odds_ratio_ci=(0,
4.375946050832565))),
(Parameters(table=[[2, 7], [8, 2]],
confidence_level=0.99,
alternative='less'),
RResults(pvalue=0.0185217259520665,
conditional_odds_ratio=0.0858623513573622,
conditional_odds_ratio_ci=(0,
1.235282118191202))),
(Parameters(table=[[5, 1], [10, 10]],
confidence_level=0.99,
alternative='less'),
RResults(pvalue=0.9782608695652173,
conditional_odds_ratio=4.725646047336587,
conditional_odds_ratio_ci=(0,
657.2063583945989))),
(Parameters(table=[[5, 15], [20, 20]],
confidence_level=0.99,
alternative='less'),
RResults(pvalue=0.05625775074399956,
conditional_odds_ratio=0.3394396617440851,
conditional_odds_ratio_ci=(0,
1.498867660683128))),
(Parameters(table=[[5, 16], [16, 25]],
confidence_level=0.99,
alternative='less'),
RResults(pvalue=0.1808979350599346,
conditional_odds_ratio=0.4937791394540491,
conditional_odds_ratio_ci=(0,
2.186159386716762))),
(Parameters(table=[[10, 5], [10, 1]],
confidence_level=0.99,
alternative='less'),
RResults(pvalue=0.1652173913043479,
conditional_odds_ratio=0.2116112781158479,
conditional_odds_ratio_ci=(0,
3.335351451901569))),
(Parameters(table=[[10, 5], [10, 0]],
confidence_level=0.99,
alternative='less'),
RResults(pvalue=0.0565217391304348,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
2.075407697450433))),
(Parameters(table=[[5, 0], [1, 4]],
confidence_level=0.99,
alternative='less'),
RResults(pvalue=1,
conditional_odds_ratio=Inf,
conditional_odds_ratio_ci=(0,
Inf))),
(Parameters(table=[[0, 5], [1, 4]],
confidence_level=0.99,
alternative='less'),
RResults(pvalue=0.5,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
99.00009507969122))),
(Parameters(table=[[5, 1], [0, 4]],
confidence_level=0.99,
alternative='less'),
RResults(pvalue=1,
conditional_odds_ratio=Inf,
conditional_odds_ratio_ci=(0,
Inf))),
(Parameters(table=[[0, 1], [3, 2]],
confidence_level=0.99,
alternative='less'),
RResults(pvalue=0.4999999999999999,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
99.00009507969123))),
(Parameters(table=[[200, 7], [8, 300]],
confidence_level=0.99,
alternative='less'),
RResults(pvalue=1,
conditional_odds_ratio=977.7866978606228,
conditional_odds_ratio_ci=(0,
4503.078257659934))),
(Parameters(table=[[28, 21], [6, 1957]],
confidence_level=0.99,
alternative='less'),
RResults(pvalue=1,
conditional_odds_ratio=425.2403028434684,
conditional_odds_ratio_ci=(0,
1811.766127544222))),
(Parameters(table=[[190, 800], [200, 900]],
confidence_level=0.99,
alternative='less'),
RResults(pvalue=0.7416227010368963,
conditional_odds_ratio=1.068697577856801,
conditional_odds_ratio_ci=(0,
1.396522811516685))),
(Parameters(table=[[100, 2], [1000, 5]],
confidence_level=0.95,
alternative='greater'),
RResults(pvalue=0.979790445314723,
conditional_odds_ratio=0.25055839934223,
conditional_odds_ratio_ci=(0.05119649909830196,
Inf))),
(Parameters(table=[[2, 7], [8, 2]],
confidence_level=0.95,
alternative='greater'),
RResults(pvalue=0.9990149169715733,
conditional_odds_ratio=0.0858623513573622,
conditional_odds_ratio_ci=(0.007163749169069961,
Inf))),
(Parameters(table=[[5, 1], [10, 10]],
confidence_level=0.95,
alternative='greater'),
RResults(pvalue=0.1652173913043478,
conditional_odds_ratio=4.725646047336587,
conditional_odds_ratio_ci=(0.5493234651081089,
Inf))),
(Parameters(table=[[5, 15], [20, 20]],
confidence_level=0.95,
alternative='greater'),
RResults(pvalue=0.9849086665340765,
conditional_odds_ratio=0.3394396617440851,
conditional_odds_ratio_ci=(0.1003538933958604,
Inf))),
(Parameters(table=[[5, 16], [16, 25]],
confidence_level=0.95,
alternative='greater'),
RResults(pvalue=0.9330176609214881,
conditional_odds_ratio=0.4937791394540491,
conditional_odds_ratio_ci=(0.146507416280863,
Inf))),
(Parameters(table=[[10, 5], [10, 1]],
confidence_level=0.95,
alternative='greater'),
RResults(pvalue=0.9782608695652174,
conditional_odds_ratio=0.2116112781158479,
conditional_odds_ratio_ci=(0.007821681994077808,
Inf))),
(Parameters(table=[[10, 5], [10, 0]],
confidence_level=0.95,
alternative='greater'),
RResults(pvalue=1,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
Inf))),
(Parameters(table=[[5, 0], [1, 4]],
confidence_level=0.95,
alternative='greater'),
RResults(pvalue=0.02380952380952382,
conditional_odds_ratio=Inf,
conditional_odds_ratio_ci=(1.487678929918272,
Inf))),
(Parameters(table=[[0, 5], [1, 4]],
confidence_level=0.95,
alternative='greater'),
RResults(pvalue=1,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
Inf))),
(Parameters(table=[[5, 1], [0, 4]],
confidence_level=0.95,
alternative='greater'),
RResults(pvalue=0.0238095238095238,
conditional_odds_ratio=Inf,
conditional_odds_ratio_ci=(1.487678929918272,
Inf))),
(Parameters(table=[[0, 1], [3, 2]],
confidence_level=0.95,
alternative='greater'),
RResults(pvalue=1,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
Inf))),
(Parameters(table=[[200, 7], [8, 300]],
confidence_level=0.95,
alternative='greater'),
RResults(pvalue=2.005657880388915e-122,
conditional_odds_ratio=977.7866978606228,
conditional_odds_ratio_ci=(397.784359748113,
Inf))),
(Parameters(table=[[28, 21], [6, 1957]],
confidence_level=0.95,
alternative='greater'),
RResults(pvalue=5.728437460831983e-44,
conditional_odds_ratio=425.2403028434684,
conditional_odds_ratio_ci=(174.7148056880929,
Inf))),
(Parameters(table=[[190, 800], [200, 900]],
confidence_level=0.95,
alternative='greater'),
RResults(pvalue=0.2959825901308897,
conditional_odds_ratio=1.068697577856801,
conditional_odds_ratio_ci=(0.8828406663967776,
Inf))),
(Parameters(table=[[100, 2], [1000, 5]],
confidence_level=0.99,
alternative='greater'),
RResults(pvalue=0.979790445314723,
conditional_odds_ratio=0.25055839934223,
conditional_odds_ratio_ci=(0.03045407081240429,
Inf))),
(Parameters(table=[[2, 7], [8, 2]],
confidence_level=0.99,
alternative='greater'),
RResults(pvalue=0.9990149169715733,
conditional_odds_ratio=0.0858623513573622,
conditional_odds_ratio_ci=(0.002768053063547901,
Inf))),
(Parameters(table=[[5, 1], [10, 10]],
confidence_level=0.99,
alternative='greater'),
RResults(pvalue=0.1652173913043478,
conditional_odds_ratio=4.725646047336587,
conditional_odds_ratio_ci=(0.2998184792279909,
Inf))),
(Parameters(table=[[5, 15], [20, 20]],
confidence_level=0.99,
alternative='greater'),
RResults(pvalue=0.9849086665340765,
conditional_odds_ratio=0.3394396617440851,
conditional_odds_ratio_ci=(0.06180414342643172,
Inf))),
(Parameters(table=[[5, 16], [16, 25]],
confidence_level=0.99,
alternative='greater'),
RResults(pvalue=0.9330176609214881,
conditional_odds_ratio=0.4937791394540491,
conditional_odds_ratio_ci=(0.09037094010066403,
Inf))),
(Parameters(table=[[10, 5], [10, 1]],
confidence_level=0.99,
alternative='greater'),
RResults(pvalue=0.9782608695652174,
conditional_odds_ratio=0.2116112781158479,
conditional_odds_ratio_ci=(0.001521592095430679,
Inf))),
(Parameters(table=[[10, 5], [10, 0]],
confidence_level=0.99,
alternative='greater'),
RResults(pvalue=1,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
Inf))),
(Parameters(table=[[5, 0], [1, 4]],
confidence_level=0.99,
alternative='greater'),
RResults(pvalue=0.02380952380952382,
conditional_odds_ratio=Inf,
conditional_odds_ratio_ci=(0.6661157890359722,
Inf))),
(Parameters(table=[[0, 5], [1, 4]],
confidence_level=0.99,
alternative='greater'),
RResults(pvalue=1,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
Inf))),
(Parameters(table=[[5, 1], [0, 4]],
confidence_level=0.99,
alternative='greater'),
RResults(pvalue=0.0238095238095238,
conditional_odds_ratio=Inf,
conditional_odds_ratio_ci=(0.6661157890359725,
Inf))),
(Parameters(table=[[0, 1], [3, 2]],
confidence_level=0.99,
alternative='greater'),
RResults(pvalue=1,
conditional_odds_ratio=0,
conditional_odds_ratio_ci=(0,
Inf))),
(Parameters(table=[[200, 7], [8, 300]],
confidence_level=0.99,
alternative='greater'),
RResults(pvalue=2.005657880388915e-122,
conditional_odds_ratio=977.7866978606228,
conditional_odds_ratio_ci=(297.9619252357688,
Inf))),
(Parameters(table=[[28, 21], [6, 1957]],
confidence_level=0.99,
alternative='greater'),
RResults(pvalue=5.728437460831983e-44,
conditional_odds_ratio=425.2403028434684,
conditional_odds_ratio_ci=(130.3213490295859,
Inf))),
(Parameters(table=[[190, 800], [200, 900]],
confidence_level=0.99,
alternative='greater'),
RResults(pvalue=0.2959825901308897,
conditional_odds_ratio=1.068697577856801,
conditional_odds_ratio_ci=(0.8176272148267533,
Inf))),
]

View File

@ -0,0 +1,108 @@
NIST/ITL StRD
Dataset Name: AtmWtAg (AtmWtAg.dat)
File Format: ASCII
Certified Values (lines 41 to 47)
Data (lines 61 to 108)
Procedure: Analysis of Variance
Reference: Powell, L.J., Murphy, T.J. and Gramlich, J.W. (1982).
"The Absolute Isotopic Abundance & Atomic Weight
of a Reference Sample of Silver".
NBS Journal of Research, 87, pp. 9-19.
Data: 1 Factor
2 Treatments
24 Replicates/Cell
48 Observations
7 Constant Leading Digits
Average Level of Difficulty
Observed Data
Model: 3 Parameters (mu, tau_1, tau_2)
y_{ij} = mu + tau_i + epsilon_{ij}
Certified Values:
Source of Sums of Mean
Variation df Squares Squares F Statistic
Between Instrument 1 3.63834187500000E-09 3.63834187500000E-09 1.59467335677930E+01
Within Instrument 46 1.04951729166667E-08 2.28155932971014E-10
Certified R-Squared 2.57426544538321E-01
Certified Residual
Standard Deviation 1.51048314446410E-05
Data: Instrument AgWt
1 107.8681568
1 107.8681465
1 107.8681572
1 107.8681785
1 107.8681446
1 107.8681903
1 107.8681526
1 107.8681494
1 107.8681616
1 107.8681587
1 107.8681519
1 107.8681486
1 107.8681419
1 107.8681569
1 107.8681508
1 107.8681672
1 107.8681385
1 107.8681518
1 107.8681662
1 107.8681424
1 107.8681360
1 107.8681333
1 107.8681610
1 107.8681477
2 107.8681079
2 107.8681344
2 107.8681513
2 107.8681197
2 107.8681604
2 107.8681385
2 107.8681642
2 107.8681365
2 107.8681151
2 107.8681082
2 107.8681517
2 107.8681448
2 107.8681198
2 107.8681482
2 107.8681334
2 107.8681609
2 107.8681101
2 107.8681512
2 107.8681469
2 107.8681360
2 107.8681254
2 107.8681261
2 107.8681450
2 107.8681368

View File

@ -0,0 +1,85 @@
NIST/ITL StRD
Dataset Name: SiRstv (SiRstv.dat)
File Format: ASCII
Certified Values (lines 41 to 47)
Data (lines 61 to 85)
Procedure: Analysis of Variance
Reference: Ehrstein, James and Croarkin, M. Carroll.
Unpublished NIST dataset.
Data: 1 Factor
5 Treatments
5 Replicates/Cell
25 Observations
3 Constant Leading Digits
Lower Level of Difficulty
Observed Data
Model: 6 Parameters (mu,tau_1, ... , tau_5)
y_{ij} = mu + tau_i + epsilon_{ij}
Certified Values:
Source of Sums of Mean
Variation df Squares Squares F Statistic
Between Instrument 4 5.11462616000000E-02 1.27865654000000E-02 1.18046237440255E+00
Within Instrument 20 2.16636560000000E-01 1.08318280000000E-02
Certified R-Squared 1.90999039051129E-01
Certified Residual
Standard Deviation 1.04076068334656E-01
Data: Instrument Resistance
1 196.3052
1 196.1240
1 196.1890
1 196.2569
1 196.3403
2 196.3042
2 196.3825
2 196.1669
2 196.3257
2 196.0422
3 196.1303
3 196.2005
3 196.2889
3 196.0343
3 196.1811
4 196.2795
4 196.1748
4 196.1494
4 196.1485
4 195.9885
5 196.2119
5 196.1051
5 196.1850
5 196.0052
5 196.2090

View File

@ -0,0 +1,249 @@
NIST/ITL StRD
Dataset Name: SmLs01 (SmLs01.dat)
File Format: ASCII
Certified Values (lines 41 to 47)
Data (lines 61 to 249)
Procedure: Analysis of Variance
Reference: Simon, Stephen D. and Lesage, James P. (1989).
"Assessing the Accuracy of ANOVA Calculations in
Statistical Software".
Computational Statistics & Data Analysis, 8, pp. 325-332.
Data: 1 Factor
9 Treatments
21 Replicates/Cell
189 Observations
1 Constant Leading Digit
Lower Level of Difficulty
Generated Data
Model: 10 Parameters (mu,tau_1, ... , tau_9)
y_{ij} = mu + tau_i + epsilon_{ij}
Certified Values:
Source of Sums of Mean
Variation df Squares Squares F Statistic
Between Treatment 8 1.68000000000000E+00 2.10000000000000E-01 2.10000000000000E+01
Within Treatment 180 1.80000000000000E+00 1.00000000000000E-02
Certified R-Squared 4.82758620689655E-01
Certified Residual
Standard Deviation 1.00000000000000E-01
Data: Treatment Response
1 1.4
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
2 1.3
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
3 1.5
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
4 1.3
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
5 1.5
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
6 1.3
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
7 1.5
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
8 1.3
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
9 1.5
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,249 @@
NIST/ITL StRD
Dataset Name: SmLs04 (SmLs04.dat)
File Format: ASCII
Certified Values (lines 41 to 47)
Data (lines 61 to 249)
Procedure: Analysis of Variance
Reference: Simon, Stephen D. and Lesage, James P. (1989).
"Assessing the Accuracy of ANOVA Calculations in
Statistical Software".
Computational Statistics & Data Analysis, 8, pp. 325-332.
Data: 1 Factor
9 Treatments
21 Replicates/Cell
189 Observations
7 Constant Leading Digits
Average Level of Difficulty
Generated Data
Model: 10 Parameters (mu,tau_1, ... , tau_9)
y_{ij} = mu + tau_i + epsilon_{ij}
Certified Values:
Source of Sums of Mean
Variation df Squares Squares F Statistic
Between Treatment 8 1.68000000000000E+00 2.10000000000000E-01 2.10000000000000E+01
Within Treatment 180 1.80000000000000E+00 1.00000000000000E-02
Certified R-Squared 4.82758620689655E-01
Certified Residual
Standard Deviation 1.00000000000000E-01
Data: Treatment Response
1 1000000.4
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
2 1000000.3
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
3 1000000.5
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
4 1000000.3
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
5 1000000.5
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
6 1000000.3
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
7 1000000.5
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
8 1000000.3
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
9 1000000.5
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,249 @@
NIST/ITL StRD
Dataset Name: SmLs07 (SmLs07.dat)
File Format: ASCII
Certified Values (lines 41 to 47)
Data (lines 61 to 249)
Procedure: Analysis of Variance
Reference: Simon, Stephen D. and Lesage, James P. (1989).
"Assessing the Accuracy of ANOVA Calculations in
Statistical Software".
Computational Statistics & Data Analysis, 8, pp. 325-332.
Data: 1 Factor
9 Treatments
21 Replicates/Cell
189 Observations
13 Constant Leading Digits
Higher Level of Difficulty
Generated Data
Model: 10 Parameters (mu,tau_1, ... , tau_9)
y_{ij} = mu + tau_i + epsilon_{ij}
Certified Values:
Source of Sums of Mean
Variation df Squares Squares F Statistic
Between Treatment 8 1.68000000000000E+00 2.10000000000000E-01 2.10000000000000E+01
Within Treatment 180 1.80000000000000E+00 1.00000000000000E-02
Certified R-Squared 4.82758620689655E-01
Certified Residual
Standard Deviation 1.00000000000000E-01
Data: Treatment Response
1 1000000000000.4
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
2 1000000000000.3
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
3 1000000000000.5
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
4 1000000000000.3
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
5 1000000000000.5
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
6 1000000000000.3
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
7 1000000000000.5
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
8 1000000000000.3
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
9 1000000000000.5
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,97 @@
NIST/ITL StRD
Dataset Name: Norris (Norris.dat)
File Format: ASCII
Certified Values (lines 31 to 46)
Data (lines 61 to 96)
Procedure: Linear Least Squares Regression
Reference: Norris, J., NIST.
Calibration of Ozone Monitors.
Data: 1 Response Variable (y)
1 Predictor Variable (x)
36 Observations
Lower Level of Difficulty
Observed Data
Model: Linear Class
2 Parameters (B0,B1)
y = B0 + B1*x + e
Certified Regression Statistics
Standard Deviation
Parameter Estimate of Estimate
B0 -0.262323073774029 0.232818234301152
B1 1.00211681802045 0.429796848199937E-03
Residual
Standard Deviation 0.884796396144373
R-Squared 0.999993745883712
Certified Analysis of Variance Table
Source of Degrees of Sums of Mean
Variation Freedom Squares Squares F Statistic
Regression 1 4255954.13232369 4255954.13232369 5436385.54079785
Residual 34 26.6173985294224 0.782864662630069
Data: y x
0.1 0.2
338.8 337.4
118.1 118.2
888.0 884.6
9.2 10.1
228.1 226.5
668.5 666.3
998.5 996.3
449.1 448.6
778.9 777.0
559.2 558.2
0.3 0.4
0.1 0.6
778.1 775.5
668.8 666.9
339.3 338.0
448.9 447.5
10.8 11.6
557.7 556.0
228.3 228.1
998.0 995.8
888.8 887.6
119.6 120.2
0.3 0.3
0.6 0.3
557.6 556.8
339.3 339.1
888.0 887.2
998.5 999.0
778.9 779.0
10.2 11.1
117.6 118.3
228.9 229.2
668.4 669.1
449.2 448.9
0.2 0.5