some new features
This commit is contained in:
@ -0,0 +1,92 @@
|
||||
"""
|
||||
Feature agglomeration. Base classes and functions for performing feature
|
||||
agglomeration.
|
||||
"""
|
||||
|
||||
# Author: V. Michel, A. Gramfort
|
||||
# License: BSD 3 clause
|
||||
|
||||
|
||||
import numpy as np
|
||||
from scipy.sparse import issparse
|
||||
|
||||
from ..base import TransformerMixin
|
||||
from ..utils import metadata_routing
|
||||
from ..utils.deprecation import _deprecate_Xt_in_inverse_transform
|
||||
from ..utils.validation import check_is_fitted
|
||||
|
||||
###############################################################################
|
||||
# Mixin class for feature agglomeration.
|
||||
|
||||
|
||||
class AgglomerationTransform(TransformerMixin):
|
||||
"""
|
||||
A class for feature agglomeration via the transform interface.
|
||||
"""
|
||||
|
||||
# This prevents ``set_split_inverse_transform`` to be generated for the
|
||||
# non-standard ``Xt`` arg on ``inverse_transform``.
|
||||
# TODO(1.7): remove when Xt is removed for inverse_transform.
|
||||
__metadata_request__inverse_transform = {"Xt": metadata_routing.UNUSED}
|
||||
|
||||
def transform(self, X):
|
||||
"""
|
||||
Transform a new matrix using the built clustering.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features) or \
|
||||
(n_samples, n_samples)
|
||||
A M by N array of M observations in N dimensions or a length
|
||||
M array of M one-dimensional observations.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Y : ndarray of shape (n_samples, n_clusters) or (n_clusters,)
|
||||
The pooled values for each feature cluster.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = self._validate_data(X, reset=False)
|
||||
if self.pooling_func == np.mean and not issparse(X):
|
||||
size = np.bincount(self.labels_)
|
||||
n_samples = X.shape[0]
|
||||
# a fast way to compute the mean of grouped features
|
||||
nX = np.array(
|
||||
[np.bincount(self.labels_, X[i, :]) / size for i in range(n_samples)]
|
||||
)
|
||||
else:
|
||||
nX = [
|
||||
self.pooling_func(X[:, self.labels_ == l], axis=1)
|
||||
for l in np.unique(self.labels_)
|
||||
]
|
||||
nX = np.array(nX).T
|
||||
return nX
|
||||
|
||||
def inverse_transform(self, X=None, *, Xt=None):
|
||||
"""
|
||||
Inverse the transformation and return a vector of size `n_features`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_clusters) or (n_clusters,)
|
||||
The values to be assigned to each cluster of samples.
|
||||
|
||||
Xt : array-like of shape (n_samples, n_clusters) or (n_clusters,)
|
||||
The values to be assigned to each cluster of samples.
|
||||
|
||||
.. deprecated:: 1.5
|
||||
`Xt` was deprecated in 1.5 and will be removed in 1.7. Use `X` instead.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X : ndarray of shape (n_samples, n_features) or (n_features,)
|
||||
A vector of size `n_samples` with the values of `Xred` assigned to
|
||||
each of the cluster of samples.
|
||||
"""
|
||||
X = _deprecate_Xt_in_inverse_transform(X, Xt)
|
||||
|
||||
check_is_fitted(self)
|
||||
|
||||
unil, inverse = np.unique(self.labels_, return_inverse=True)
|
||||
return X[..., inverse]
|
||||
Reference in New Issue
Block a user