some new features
This commit is contained in:
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,138 @@
|
||||
Group,T,Status
|
||||
ALL,2081,0
|
||||
ALL,1602,0
|
||||
ALL,1496,0
|
||||
ALL,1462,0
|
||||
ALL,1433,0
|
||||
ALL,1377,0
|
||||
ALL,1330,0
|
||||
ALL,996,0
|
||||
ALL,226,0
|
||||
ALL,1199,0
|
||||
ALL,1111,0
|
||||
ALL,530,0
|
||||
ALL,1182,0
|
||||
ALL,1167,0
|
||||
ALL,418,1
|
||||
ALL,383,1
|
||||
ALL,276,1
|
||||
ALL,104,1
|
||||
ALL,609,1
|
||||
ALL,172,1
|
||||
ALL,487,1
|
||||
ALL,662,1
|
||||
ALL,194,1
|
||||
ALL,230,1
|
||||
ALL,526,1
|
||||
ALL,122,1
|
||||
ALL,129,1
|
||||
ALL,74,1
|
||||
ALL,122,1
|
||||
ALL,86,1
|
||||
ALL,466,1
|
||||
ALL,192,1
|
||||
ALL,109,1
|
||||
ALL,55,1
|
||||
ALL,1,1
|
||||
ALL,107,1
|
||||
ALL,110,1
|
||||
ALL,332,1
|
||||
AML-Low Risk,2569,0
|
||||
AML-Low Risk,2506,0
|
||||
AML-Low Risk,2409,0
|
||||
AML-Low Risk,2218,0
|
||||
AML-Low Risk,1857,0
|
||||
AML-Low Risk,1829,0
|
||||
AML-Low Risk,1562,0
|
||||
AML-Low Risk,1470,0
|
||||
AML-Low Risk,1363,0
|
||||
AML-Low Risk,1030,0
|
||||
AML-Low Risk,860,0
|
||||
AML-Low Risk,1258,0
|
||||
AML-Low Risk,2246,0
|
||||
AML-Low Risk,1870,0
|
||||
AML-Low Risk,1799,0
|
||||
AML-Low Risk,1709,0
|
||||
AML-Low Risk,1674,0
|
||||
AML-Low Risk,1568,0
|
||||
AML-Low Risk,1527,0
|
||||
AML-Low Risk,1324,0
|
||||
AML-Low Risk,957,0
|
||||
AML-Low Risk,932,0
|
||||
AML-Low Risk,847,0
|
||||
AML-Low Risk,848,0
|
||||
AML-Low Risk,1850,0
|
||||
AML-Low Risk,1843,0
|
||||
AML-Low Risk,1535,0
|
||||
AML-Low Risk,1447,0
|
||||
AML-Low Risk,1384,0
|
||||
AML-Low Risk,414,1
|
||||
AML-Low Risk,2204,1
|
||||
AML-Low Risk,1063,1
|
||||
AML-Low Risk,481,1
|
||||
AML-Low Risk,105,1
|
||||
AML-Low Risk,641,1
|
||||
AML-Low Risk,390,1
|
||||
AML-Low Risk,288,1
|
||||
AML-Low Risk,421,1
|
||||
AML-Low Risk,79,1
|
||||
AML-Low Risk,748,1
|
||||
AML-Low Risk,486,1
|
||||
AML-Low Risk,48,1
|
||||
AML-Low Risk,272,1
|
||||
AML-Low Risk,1074,1
|
||||
AML-Low Risk,381,1
|
||||
AML-Low Risk,10,1
|
||||
AML-Low Risk,53,1
|
||||
AML-Low Risk,80,1
|
||||
AML-Low Risk,35,1
|
||||
AML-Low Risk,248,1
|
||||
AML-Low Risk,704,1
|
||||
AML-Low Risk,211,1
|
||||
AML-Low Risk,219,1
|
||||
AML-Low Risk,606,1
|
||||
AML-High Risk,2640,0
|
||||
AML-High Risk,2430,0
|
||||
AML-High Risk,2252,0
|
||||
AML-High Risk,2140,0
|
||||
AML-High Risk,2133,0
|
||||
AML-High Risk,1238,0
|
||||
AML-High Risk,1631,0
|
||||
AML-High Risk,2024,0
|
||||
AML-High Risk,1345,0
|
||||
AML-High Risk,1136,0
|
||||
AML-High Risk,845,0
|
||||
AML-High Risk,422,1
|
||||
AML-High Risk,162,1
|
||||
AML-High Risk,84,1
|
||||
AML-High Risk,100,1
|
||||
AML-High Risk,2,1
|
||||
AML-High Risk,47,1
|
||||
AML-High Risk,242,1
|
||||
AML-High Risk,456,1
|
||||
AML-High Risk,268,1
|
||||
AML-High Risk,318,1
|
||||
AML-High Risk,32,1
|
||||
AML-High Risk,467,1
|
||||
AML-High Risk,47,1
|
||||
AML-High Risk,390,1
|
||||
AML-High Risk,183,1
|
||||
AML-High Risk,105,1
|
||||
AML-High Risk,115,1
|
||||
AML-High Risk,164,1
|
||||
AML-High Risk,93,1
|
||||
AML-High Risk,120,1
|
||||
AML-High Risk,80,1
|
||||
AML-High Risk,677,1
|
||||
AML-High Risk,64,1
|
||||
AML-High Risk,168,1
|
||||
AML-High Risk,74,1
|
||||
AML-High Risk,16,1
|
||||
AML-High Risk,157,1
|
||||
AML-High Risk,625,1
|
||||
AML-High Risk,48,1
|
||||
AML-High Risk,273,1
|
||||
AML-High Risk,63,1
|
||||
AML-High Risk,76,1
|
||||
AML-High Risk,113,1
|
||||
AML-High Risk,363,1
|
||||
|
@ -0,0 +1,24 @@
|
||||
t,s,se,linear,loglog,log,asinsqrt,logit
|
||||
1,0.97368,0.025967,8.6141,2.37831,9.7871,4.44648,2.47903
|
||||
55,0.94737,0.036224,5.4486,2.36375,6.1098,3.60151,2.46635
|
||||
74,0.92105,0.043744,3.9103,2.16833,4.3257,2.94398,2.25757
|
||||
86,0.89474,0.049784,2.9073,1.89961,3.1713,2.38164,1.97023
|
||||
104,0.86842,0.054836,2.1595,1.59196,2.3217,1.87884,1.64297
|
||||
107,0.84211,0.059153,1.5571,1.26050,1.6490,1.41733,1.29331
|
||||
109,0.81579,0.062886,1.0462,0.91307,1.0908,0.98624,0.93069
|
||||
110,0.78947,0.066135,0.5969,0.55415,0.6123,0.57846,0.56079
|
||||
122,0.73684,0.071434,–0.1842,–0.18808,–0.1826,–0.18573,–0.18728
|
||||
129,0.71053,0.073570,–0.5365,–0.56842,–0.5222,–0.54859,–0.56101
|
||||
172,0.68421,0.075405,–0.8725,–0.95372,–0.8330,–0.90178,–0.93247
|
||||
192,0.65789,0.076960,–1.1968,–1.34341,–1.1201,–1.24712,–1.30048
|
||||
194,0.63158,0.078252,–1.5133,–1.73709,–1.3870,–1.58613,–1.66406
|
||||
230,0.60412,0.079522,–1.8345,–2.14672,–1.6432,–1.92995,–2.03291
|
||||
276,0.57666,0.080509,–2.1531,–2.55898,–1.8825,–2.26871,–2.39408
|
||||
332,0.54920,0.081223,–2.4722,–2.97389,–2.1070,–2.60380,–2.74691
|
||||
383,0.52174,0.081672,–2.7948,–3.39146,–2.3183,–2.93646,–3.09068
|
||||
418,0.49428,0.081860,–3.1239,–3.81166,–2.5177,–3.26782,–3.42460
|
||||
466,0.46682,0.081788,–3.4624,–4.23445,–2.7062,–3.59898,–3.74781
|
||||
487,0.43936,0.081457,–3.8136,–4.65971,–2.8844,–3.93103,–4.05931
|
||||
526,0.41190,0.080862,–4.1812,–5.08726,–3.0527,–4.26507,–4.35795
|
||||
609,0.38248,0.080260,–4.5791,–5.52446,–3.2091,–4.60719,–4.64271
|
||||
662,0.35306,0.079296,–5.0059,–5.96222,–3.3546,–4.95358,–4.90900
|
||||
|
@ -0,0 +1,60 @@
|
||||
import numpy as np
|
||||
|
||||
"""
|
||||
Generate data sets for testing Cox proportional hazards regression
|
||||
models.
|
||||
|
||||
After updating the test data sets, use R to run the survival.R script
|
||||
to update the R results.
|
||||
"""
|
||||
|
||||
# The current data may not reflect this seed
|
||||
np.random.seed(5234)
|
||||
|
||||
# Loop over pairs containing (sample size, number of variables).
|
||||
for (n, p) in (20, 1), (50, 1), (50, 2), (100, 5), (1000, 10):
|
||||
|
||||
exog = np.random.normal(size=(5*n, p))
|
||||
coef = np.linspace(-0.5, 0.5, p)
|
||||
lpred = np.dot(exog, coef)
|
||||
expected_survival_time = np.exp(-lpred)
|
||||
|
||||
# Survival times are exponential
|
||||
survival_time = -np.log(np.random.uniform(size=5*n))
|
||||
survival_time *= expected_survival_time
|
||||
|
||||
# Set this to get a reasonable amount of censoring
|
||||
expected_censoring_time = np.mean(expected_survival_time)
|
||||
|
||||
# Theses are the observation times.
|
||||
censoring_time = -np.log(np.random.uniform(size=5*n))
|
||||
censoring_time *= expected_censoring_time
|
||||
|
||||
# Entry times
|
||||
entry_time = -np.log(np.random.uniform(size=5*n))
|
||||
entry_time *= 0.5*expected_censoring_time
|
||||
|
||||
# 1=failure (death), 0=no failure (no death)
|
||||
status = 1*(survival_time <= censoring_time)
|
||||
|
||||
# The censoring time of the failure time, whichever comes first
|
||||
time = np.where(status == 1, survival_time, censoring_time)
|
||||
|
||||
# Round time so that we have ties
|
||||
time = np.around(time, decimals=1)
|
||||
|
||||
# Only take cases where the entry time is before the failure or
|
||||
# censoring time. Take exactly n such cases.
|
||||
ii = np.flatnonzero(entry_time < time)
|
||||
ii = ii[np.random.permutation(len(ii))[0:n]]
|
||||
status = status[ii]
|
||||
time = time[ii]
|
||||
exog = exog[ii, :]
|
||||
entry_time = entry_time[ii]
|
||||
|
||||
data = np.concatenate((time[:, None], status[:, None],
|
||||
entry_time[:, None], exog),
|
||||
axis=1)
|
||||
|
||||
fname = "results/survival_data_%d_%d.csv" % (n, p)
|
||||
np.savetxt(fname, data, fmt="%.5f")
|
||||
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,100 @@
|
||||
2.00000 0.00000 0.04088 1.65888 0.43887 2.16009 1.53852 -0.32477
|
||||
0.80000 0.00000 0.64317 -0.01543 1.27200 0.06238 -1.39983 0.28912
|
||||
0.70000 0.00000 0.62035 0.01568 1.10189 1.08241 0.28838 0.03060
|
||||
0.20000 0.00000 0.00396 1.92122 -0.74627 -0.20202 -0.49432 0.18627
|
||||
1.30000 0.00000 0.48061 0.03445 0.62648 -0.05107 0.21468 -1.33564
|
||||
0.10000 1.00000 0.00311 -0.42507 -0.02765 0.92646 -1.79002 0.46062
|
||||
0.10000 1.00000 0.00360 -1.92760 -0.97652 0.33572 1.09292 0.99413
|
||||
0.20000 1.00000 0.16825 -0.92224 -1.46157 -0.83315 1.27701 0.89145
|
||||
1.90000 0.00000 0.31681 0.47668 -2.21992 -1.23187 0.17330 -0.71609
|
||||
0.20000 1.00000 0.11154 -0.78852 -0.22280 -0.39515 0.49144 0.73336
|
||||
0.20000 0.00000 0.08597 0.63231 0.55002 0.32947 0.04749 -0.85148
|
||||
0.60000 1.00000 0.07035 -0.98309 0.24301 -0.72338 0.81746 -1.26767
|
||||
0.90000 1.00000 0.12016 -0.95699 -0.79824 -0.33108 1.09238 -1.56246
|
||||
0.90000 1.00000 0.02773 0.71522 0.92762 -0.58902 1.14907 0.04783
|
||||
1.10000 0.00000 0.69469 0.23457 0.83722 -0.50415 0.55788 -0.06246
|
||||
1.20000 0.00000 0.75846 -0.48568 0.26540 -0.65537 1.36581 -0.12905
|
||||
0.90000 1.00000 0.18518 -0.64696 1.20687 -1.18730 1.23675 -0.30962
|
||||
0.40000 1.00000 0.05883 -0.81157 0.13249 -1.84991 0.19780 0.79789
|
||||
0.30000 1.00000 0.29091 0.50970 1.45016 0.02051 1.09439 0.66784
|
||||
0.90000 0.00000 0.21925 1.25407 -0.55512 0.06966 -0.22258 -1.92762
|
||||
0.80000 0.00000 0.52030 -1.82573 -0.96723 3.06176 -0.78653 -1.03201
|
||||
0.50000 0.00000 0.31396 -1.50465 0.34928 -0.28756 -0.75276 -1.60910
|
||||
2.80000 0.00000 0.50161 -0.51879 1.85085 1.62061 1.62330 0.31456
|
||||
0.20000 0.00000 0.17478 0.51892 -2.01221 0.24535 0.33276 -0.00219
|
||||
0.70000 1.00000 0.02345 1.01616 -2.08282 0.85616 0.20281 0.85377
|
||||
0.50000 0.00000 0.02822 -1.22080 0.43769 -0.94754 -1.30187 0.90808
|
||||
0.60000 0.00000 0.35722 1.42375 -0.38970 -0.64537 -1.08120 -0.66272
|
||||
0.10000 0.00000 0.01318 -2.32399 -0.32153 -0.64911 2.44607 -0.67781
|
||||
0.70000 1.00000 0.33234 -0.86239 2.74390 -0.26652 -1.38002 -1.72868
|
||||
0.30000 1.00000 0.01818 -0.00276 -0.73023 -0.07908 -0.36846 0.24726
|
||||
2.50000 1.00000 0.12683 -0.20405 1.38441 0.11380 -1.55265 1.61875
|
||||
1.90000 1.00000 1.05276 0.46781 0.14070 -2.79994 0.69604 -0.71800
|
||||
0.30000 0.00000 0.12424 0.34365 -1.30879 0.06613 -1.80332 0.50442
|
||||
2.00000 1.00000 0.16247 -0.31284 -1.08730 -0.08539 0.00160 -1.68699
|
||||
2.10000 1.00000 0.19426 -0.31993 0.21405 -0.52766 -1.15955 -1.66554
|
||||
0.20000 1.00000 0.01721 0.25259 0.37725 1.05776 0.20531 0.00615
|
||||
0.20000 0.00000 0.08898 0.25225 -0.59453 -1.68651 0.01607 -0.13487
|
||||
3.30000 1.00000 0.36441 1.58715 0.10576 0.90020 -0.64476 0.16278
|
||||
1.60000 1.00000 0.25111 0.25002 0.29993 0.17598 -0.01910 0.14305
|
||||
1.00000 1.00000 0.91850 0.51040 -0.37021 -1.11632 0.21391 -0.13709
|
||||
1.50000 1.00000 0.85495 1.01267 0.53073 1.60362 0.91206 -0.06950
|
||||
1.70000 0.00000 0.98528 -0.03470 0.46678 0.51241 1.81681 -0.87271
|
||||
1.50000 0.00000 0.45072 1.22177 -0.33281 -0.21419 0.30984 0.25901
|
||||
0.30000 1.00000 0.01095 0.08628 0.06831 -0.55069 -0.98570 -1.47021
|
||||
0.70000 1.00000 0.20957 0.09985 0.55591 -0.14907 1.44737 -0.19020
|
||||
1.80000 0.00000 0.48048 -0.15396 2.06115 0.73874 -0.63995 0.83598
|
||||
1.20000 1.00000 0.05958 1.34778 1.18792 -0.37932 2.49795 0.34569
|
||||
1.60000 0.00000 0.37681 0.42462 0.39925 0.31818 -1.24178 -2.10098
|
||||
1.60000 0.00000 0.27681 0.43797 0.42857 0.71614 0.47339 -0.69239
|
||||
1.50000 0.00000 0.16083 -0.68583 -1.09449 0.14085 0.15615 -2.17219
|
||||
0.30000 0.00000 0.11799 0.84516 0.60886 -0.02455 -0.88110 -0.78903
|
||||
1.30000 0.00000 0.47439 1.14278 0.22765 0.00355 1.24747 -0.44769
|
||||
1.00000 0.00000 0.34329 1.13115 -0.71649 0.20680 -0.62674 0.11690
|
||||
0.90000 0.00000 0.07241 0.87043 -0.52193 -1.82556 -0.96574 -0.46303
|
||||
1.50000 1.00000 0.40548 0.17182 1.23767 -0.22511 0.92575 -0.99200
|
||||
0.70000 0.00000 0.13319 0.64169 0.50024 -1.40025 -0.22809 0.37239
|
||||
0.40000 1.00000 0.30444 -1.48351 -0.71597 1.13583 -0.31381 0.17228
|
||||
0.40000 0.00000 0.00518 0.78247 0.27451 0.90321 0.88329 0.87831
|
||||
0.10000 1.00000 0.06982 -0.40623 -0.59915 0.16943 0.65481 0.74213
|
||||
0.20000 1.00000 0.02326 0.98320 -0.33050 -1.45162 1.03546 0.05095
|
||||
1.70000 1.00000 0.26671 0.39948 -0.01170 -1.99802 1.09214 0.38202
|
||||
0.50000 1.00000 0.20631 1.85586 1.26267 1.09781 0.26681 0.86920
|
||||
0.30000 1.00000 0.03166 -1.12012 -2.17322 -0.81189 0.47966 0.66974
|
||||
0.40000 0.00000 0.17714 -0.62389 0.11727 0.30922 0.45983 -1.18198
|
||||
0.90000 0.00000 0.39204 -1.45848 0.60149 0.40569 -0.14587 -0.41534
|
||||
0.30000 0.00000 0.03714 0.83848 0.53119 -0.58428 1.31723 -1.24635
|
||||
1.10000 0.00000 0.46379 0.21576 -0.81655 0.31364 -0.27610 -1.03055
|
||||
1.40000 0.00000 0.71581 0.88179 2.50473 -1.20963 0.22792 -0.68145
|
||||
0.50000 1.00000 0.04560 -0.13862 1.38279 -0.96235 1.86021 0.77598
|
||||
0.10000 0.00000 0.05473 0.46752 -1.80012 -0.98436 0.60777 -0.35878
|
||||
0.80000 1.00000 0.42481 -0.40098 2.76071 0.74394 1.09659 0.23616
|
||||
0.30000 0.00000 0.23718 -0.32013 0.39748 -0.88636 -1.68891 0.75689
|
||||
0.50000 0.00000 0.03726 0.59910 -0.14940 -0.01991 -0.28925 0.23417
|
||||
0.30000 0.00000 0.12740 0.15096 0.90280 -0.61087 0.48783 1.80243
|
||||
0.70000 1.00000 0.63824 0.55312 -0.76756 -1.62404 0.50754 1.83655
|
||||
1.60000 0.00000 0.03744 -0.92345 -0.40163 -0.14609 -0.71917 -0.39060
|
||||
3.20000 0.00000 0.52178 0.30277 -0.17976 -0.45561 -0.48284 -1.54195
|
||||
0.90000 0.00000 0.04532 -0.14812 0.03298 -0.11498 0.09681 -2.37051
|
||||
0.80000 0.00000 0.36657 -0.97253 -0.04856 0.14913 0.00607 0.78143
|
||||
0.60000 1.00000 0.03655 -0.99128 0.85325 1.24141 -1.52963 1.18147
|
||||
0.40000 0.00000 0.01616 1.21142 -2.49815 2.32805 0.95173 0.40863
|
||||
0.30000 1.00000 0.00955 -2.06282 -1.01843 -1.49079 0.84123 1.16571
|
||||
0.40000 1.00000 0.01111 -0.02352 -1.14282 -1.73493 -0.08088 0.22988
|
||||
1.00000 1.00000 0.14784 0.66488 -0.55177 0.29813 1.06110 -0.09346
|
||||
0.10000 0.00000 0.01538 -0.01239 -0.38551 0.90332 0.98841 -1.09158
|
||||
1.80000 1.00000 1.44280 1.15346 1.52878 -0.78441 0.74890 1.19751
|
||||
0.40000 0.00000 0.14388 -0.62050 1.33600 -1.25079 1.04416 1.09523
|
||||
0.50000 0.00000 0.25285 0.43475 -0.66619 -1.80572 -1.41659 -0.18333
|
||||
0.70000 1.00000 0.12394 0.07814 -0.49443 0.52055 -0.85472 1.47196
|
||||
1.00000 0.00000 0.00122 1.35184 -0.75871 -0.33501 -0.20529 1.28920
|
||||
0.90000 1.00000 0.41370 0.54683 1.24851 -1.14847 -0.04749 1.60048
|
||||
0.10000 1.00000 0.06023 0.32626 -0.11112 -0.10537 0.58654 0.55261
|
||||
1.30000 0.00000 0.27967 -0.77736 -0.03111 -3.14766 -0.79793 -0.72638
|
||||
0.70000 0.00000 0.36676 -0.77517 0.31001 -1.09973 -1.75452 -0.82917
|
||||
0.30000 1.00000 0.13509 -0.12913 1.30423 -1.15341 0.04622 0.52666
|
||||
1.80000 0.00000 0.11982 -0.64227 -0.51723 0.64616 -1.48093 -0.81054
|
||||
1.10000 1.00000 0.26003 -0.04358 -0.64401 1.67422 -1.79441 -1.28941
|
||||
1.00000 0.00000 0.98041 1.36679 0.03887 0.94946 -1.98330 -1.71907
|
||||
0.50000 1.00000 0.48143 0.25458 0.05441 0.11660 0.00090 -0.40448
|
||||
1.80000 1.00000 0.15619 0.29362 -1.22544 -0.09859 0.02863 -1.39324
|
||||
|
@ -0,0 +1,20 @@
|
||||
0.70000 1.00000 0.17884 -0.80807
|
||||
0.60000 0.00000 0.23284 -0.10099
|
||||
1.40000 1.00000 0.07038 -0.34916
|
||||
0.80000 1.00000 0.04943 1.32464
|
||||
0.40000 1.00000 0.19263 -1.51983
|
||||
0.70000 0.00000 0.11941 0.75329
|
||||
0.40000 1.00000 0.16606 0.13835
|
||||
1.20000 0.00000 0.05183 0.97574
|
||||
1.20000 0.00000 0.27814 1.15109
|
||||
0.30000 0.00000 0.26536 -0.07403
|
||||
0.50000 1.00000 0.15457 -1.10065
|
||||
0.40000 1.00000 0.19745 -0.64876
|
||||
0.30000 1.00000 0.07634 0.76335
|
||||
1.10000 0.00000 0.25912 0.86522
|
||||
0.50000 1.00000 0.00805 -0.27593
|
||||
1.50000 0.00000 0.47960 0.24884
|
||||
0.10000 0.00000 0.00516 0.33618
|
||||
0.20000 0.00000 0.07805 0.39894
|
||||
1.30000 1.00000 0.28314 0.19641
|
||||
0.70000 0.00000 0.29323 0.70037
|
||||
|
@ -0,0 +1,50 @@
|
||||
1.10000 0.00000 0.34994 -0.01447
|
||||
0.50000 0.00000 0.19143 0.10335
|
||||
0.20000 1.00000 0.07772 -0.23178
|
||||
0.40000 1.00000 0.20723 -2.16909
|
||||
1.00000 0.00000 0.15399 -0.10232
|
||||
0.40000 1.00000 0.03610 -0.49694
|
||||
0.40000 1.00000 0.12840 -1.20376
|
||||
0.20000 0.00000 0.14323 0.78727
|
||||
0.30000 0.00000 0.29799 0.31506
|
||||
0.20000 1.00000 0.14530 0.89771
|
||||
1.80000 0.00000 0.20163 2.18046
|
||||
0.20000 1.00000 0.08723 -0.49941
|
||||
0.70000 0.00000 0.62887 0.74497
|
||||
1.70000 0.00000 1.26137 0.31418
|
||||
1.00000 1.00000 0.61647 1.54372
|
||||
0.70000 0.00000 0.16552 1.02511
|
||||
0.80000 1.00000 0.24764 0.03132
|
||||
0.60000 1.00000 0.31866 -0.75876
|
||||
0.10000 0.00000 0.04446 0.16542
|
||||
0.40000 0.00000 0.28586 0.12311
|
||||
0.50000 1.00000 0.36568 -0.70318
|
||||
0.40000 1.00000 0.06591 0.10302
|
||||
2.40000 0.00000 0.62202 0.89696
|
||||
0.30000 1.00000 0.04989 -2.19325
|
||||
0.50000 0.00000 0.14153 0.35311
|
||||
1.20000 0.00000 0.32188 0.37552
|
||||
1.20000 1.00000 0.43017 0.85034
|
||||
0.20000 0.00000 0.08460 0.69427
|
||||
0.40000 0.00000 0.11157 1.02984
|
||||
1.90000 1.00000 0.82567 0.56098
|
||||
0.70000 1.00000 0.03936 -0.32045
|
||||
0.40000 1.00000 0.29959 -0.53575
|
||||
0.50000 0.00000 0.40070 -2.07033
|
||||
2.80000 0.00000 0.47653 -0.13154
|
||||
1.70000 0.00000 0.90095 1.60037
|
||||
0.70000 0.00000 0.12335 0.39483
|
||||
0.80000 0.00000 0.56741 -0.29127
|
||||
0.40000 1.00000 0.35975 -0.62702
|
||||
0.60000 0.00000 0.34351 -0.60780
|
||||
1.00000 0.00000 0.54425 -0.83077
|
||||
2.40000 1.00000 0.15080 0.01460
|
||||
1.50000 0.00000 0.15170 2.29830
|
||||
1.00000 1.00000 0.09671 0.80049
|
||||
0.30000 1.00000 0.23474 0.28060
|
||||
0.90000 0.00000 0.56784 -0.45666
|
||||
1.60000 1.00000 0.73536 0.17942
|
||||
0.20000 0.00000 0.19858 1.43121
|
||||
0.30000 0.00000 0.10249 0.63181
|
||||
0.40000 0.00000 0.15787 -0.86227
|
||||
1.10000 1.00000 0.40295 0.73249
|
||||
|
@ -0,0 +1,50 @@
|
||||
1.00000 1.00000 0.03528 -0.38315 -1.11646
|
||||
0.30000 1.00000 0.01149 -2.16263 0.67790
|
||||
1.50000 1.00000 1.19729 1.33121 -0.43045
|
||||
0.70000 1.00000 0.53896 0.84117 -0.63001
|
||||
0.20000 1.00000 0.16054 -0.95780 -0.82060
|
||||
0.90000 1.00000 0.30738 -1.08477 -0.06120
|
||||
0.40000 0.00000 0.12942 -1.76866 -0.04241
|
||||
0.50000 1.00000 0.13266 -0.26914 -1.53422
|
||||
0.90000 0.00000 0.15526 -0.81154 -0.36088
|
||||
0.60000 0.00000 0.12826 0.33186 0.65154
|
||||
0.70000 0.00000 0.22373 0.92204 0.25643
|
||||
1.20000 1.00000 0.48185 -0.43982 0.31456
|
||||
0.90000 0.00000 0.63365 -1.04665 -2.21337
|
||||
0.60000 0.00000 0.07299 -2.42939 0.18910
|
||||
1.20000 1.00000 0.69923 -0.29619 0.26199
|
||||
0.80000 0.00000 0.10030 0.85841 0.88421
|
||||
0.80000 1.00000 0.63120 -0.36353 0.26827
|
||||
0.70000 1.00000 0.55604 -1.95990 -0.44759
|
||||
1.10000 0.00000 0.40564 0.88427 -1.96625
|
||||
0.20000 1.00000 0.03342 0.64777 -0.36391
|
||||
0.10000 1.00000 0.06233 -0.64523 0.51863
|
||||
1.10000 1.00000 0.04864 2.43561 0.44143
|
||||
1.00000 0.00000 0.14794 1.51211 -1.71867
|
||||
1.30000 1.00000 0.16023 -0.49040 -0.02378
|
||||
0.40000 1.00000 0.24862 0.08828 -0.70830
|
||||
0.50000 0.00000 0.12510 1.64139 -0.07560
|
||||
1.90000 1.00000 0.57775 0.22910 -0.06035
|
||||
0.60000 0.00000 0.21988 -0.61760 -0.84216
|
||||
1.50000 0.00000 0.73572 -0.31742 -0.50461
|
||||
0.20000 0.00000 0.09880 0.01778 -0.61300
|
||||
2.70000 1.00000 0.68267 0.46799 -1.20130
|
||||
0.20000 0.00000 0.00640 -0.57452 0.07641
|
||||
1.00000 0.00000 0.53120 0.10882 -1.29716
|
||||
1.40000 0.00000 0.39915 1.78210 -0.98747
|
||||
0.30000 1.00000 0.24249 -0.52481 -0.00631
|
||||
1.50000 0.00000 0.90297 -0.15558 -0.41401
|
||||
0.60000 0.00000 0.11513 1.91513 0.84025
|
||||
2.90000 0.00000 1.22897 0.83216 0.05158
|
||||
0.20000 1.00000 0.14026 -0.15508 2.57765
|
||||
0.20000 1.00000 0.02342 -0.43017 -0.19378
|
||||
0.10000 1.00000 0.01043 -2.09826 1.82889
|
||||
1.00000 0.00000 0.12414 -0.15255 -0.78868
|
||||
0.10000 0.00000 0.08182 2.05096 -0.00273
|
||||
0.70000 0.00000 0.50106 -1.11553 -0.37599
|
||||
0.70000 0.00000 0.04540 0.20011 -1.63279
|
||||
0.70000 1.00000 0.41003 1.04118 0.07873
|
||||
0.40000 1.00000 0.33584 -1.70869 -0.94676
|
||||
1.20000 0.00000 0.59698 0.21795 -2.65967
|
||||
1.10000 0.00000 0.90747 1.10303 2.21828
|
||||
0.20000 0.00000 0.15655 1.50321 0.88795
|
||||
|
@ -0,0 +1,10 @@
|
||||
import numpy as np
|
||||
|
||||
coef_50_2_0 = np.array([-0.6748149, 0.5219471])
|
||||
|
||||
coef_50_2_1 = np.array([-0.3464841, 0.211115])
|
||||
|
||||
coef_100_5_0 = np.array([
|
||||
-0.4839566, -0.3130558, -0.1239565, 0.3466049, 0.5827503])
|
||||
|
||||
coef_100_5_1 = np.array([-0.1314948, 0, 0, 0.0324285, 0.2364489])
|
||||
@ -0,0 +1,442 @@
|
||||
import numpy as np
|
||||
|
||||
coef_20_1_bre = np.array([-0.9185611])
|
||||
|
||||
se_20_1_bre = np.array([0.4706831])
|
||||
|
||||
time_20_1_bre = np.array([
|
||||
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.1, 1.2, 1.3, 1.4, 1.5])
|
||||
|
||||
hazard_20_1_bre = np.array([
|
||||
0, 0, 0.04139181, 0.1755379, 0.3121216, 0.3121216, 0.4263121,
|
||||
0.6196358, 0.6196358, 0.6196358, 0.909556, 1.31083, 1.31083])
|
||||
|
||||
coef_20_1_et_bre = np.array([-0.8907007])
|
||||
|
||||
se_20_1_et_bre = np.array([0.4683384])
|
||||
|
||||
time_20_1_et_bre = np.array([0])
|
||||
|
||||
hazard_20_1_et_bre = np.array([0])
|
||||
|
||||
coef_20_1_st_bre = np.array([-0.5766809])
|
||||
|
||||
se_20_1_st_bre = np.array([0.4418918])
|
||||
|
||||
time_20_1_st_bre = np.array([0])
|
||||
|
||||
hazard_20_1_st_bre = np.array([0])
|
||||
|
||||
coef_20_1_et_st_bre = np.array([-0.5785683])
|
||||
|
||||
se_20_1_et_st_bre = np.array([0.4388437])
|
||||
|
||||
time_20_1_et_st_bre = np.array([0])
|
||||
|
||||
hazard_20_1_et_st_bre = np.array([0])
|
||||
|
||||
coef_20_1_efr = np.array([-0.9975319])
|
||||
|
||||
se_20_1_efr = np.array([0.4792421])
|
||||
|
||||
time_20_1_efr = np.array([
|
||||
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.1, 1.2, 1.3, 1.4, 1.5])
|
||||
|
||||
hazard_20_1_efr = np.array([
|
||||
0, 0, 0.03934634, 0.1663316, 0.2986427, 0.2986427, 0.4119189,
|
||||
0.6077373, 0.6077373, 0.6077373, 0.8933041, 1.285732, 1.285732])
|
||||
|
||||
coef_20_1_et_efr = np.array([-0.9679541])
|
||||
|
||||
se_20_1_et_efr = np.array([0.4766406])
|
||||
|
||||
time_20_1_et_efr = np.array([0])
|
||||
|
||||
hazard_20_1_et_efr = np.array([0])
|
||||
|
||||
coef_20_1_st_efr = np.array([-0.6345294])
|
||||
|
||||
se_20_1_st_efr = np.array([0.4455952])
|
||||
|
||||
time_20_1_st_efr = np.array([0])
|
||||
|
||||
hazard_20_1_st_efr = np.array([0])
|
||||
|
||||
coef_20_1_et_st_efr = np.array([-0.6355622])
|
||||
|
||||
se_20_1_et_st_efr = np.array([0.4423104])
|
||||
|
||||
time_20_1_et_st_efr = np.array([0])
|
||||
|
||||
hazard_20_1_et_st_efr = np.array([0])
|
||||
|
||||
coef_50_1_bre = np.array([-0.6761247])
|
||||
|
||||
se_50_1_bre = np.array([0.25133])
|
||||
|
||||
time_50_1_bre = np.array([
|
||||
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2,
|
||||
1.5, 1.6, 1.7, 1.8, 1.9, 2.4, 2.8])
|
||||
|
||||
hazard_50_1_bre = np.array([
|
||||
0, 0.04895521, 0.08457461, 0.2073863, 0.2382473, 0.2793018,
|
||||
0.3271622, 0.3842953, 0.3842953, 0.5310807, 0.6360276,
|
||||
0.7648251, 0.7648251, 0.9294298, 0.9294298, 0.9294298,
|
||||
1.206438, 1.555569, 1.555569])
|
||||
|
||||
coef_50_1_et_bre = np.array([-0.6492871])
|
||||
|
||||
se_50_1_et_bre = np.array([0.2542493])
|
||||
|
||||
time_50_1_et_bre = np.array([0])
|
||||
|
||||
hazard_50_1_et_bre = np.array([0])
|
||||
|
||||
coef_50_1_st_bre = np.array([-0.7051135])
|
||||
|
||||
se_50_1_st_bre = np.array([0.2852093])
|
||||
|
||||
time_50_1_st_bre = np.array([0])
|
||||
|
||||
hazard_50_1_st_bre = np.array([0])
|
||||
|
||||
coef_50_1_et_st_bre = np.array([-0.8672546])
|
||||
|
||||
se_50_1_et_st_bre = np.array([0.3443235])
|
||||
|
||||
time_50_1_et_st_bre = np.array([0])
|
||||
|
||||
hazard_50_1_et_st_bre = np.array([0])
|
||||
|
||||
coef_50_1_efr = np.array([-0.7119322])
|
||||
|
||||
se_50_1_efr = np.array([0.2533563])
|
||||
|
||||
time_50_1_efr = np.array([
|
||||
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2,
|
||||
1.5, 1.6, 1.7, 1.8, 1.9, 2.4, 2.8])
|
||||
|
||||
hazard_50_1_efr = np.array([
|
||||
0, 0.04773902, 0.08238731, 0.2022993, 0.2327053, 0.2736316,
|
||||
0.3215519, 0.3787123, 0.3787123, 0.526184, 0.6323073,
|
||||
0.7627338, 0.7627338, 0.9288858, 0.9288858, 0.9288858,
|
||||
1.206835, 1.556054, 1.556054])
|
||||
|
||||
coef_50_1_et_efr = np.array([-0.7103063])
|
||||
|
||||
se_50_1_et_efr = np.array([0.2598129])
|
||||
|
||||
time_50_1_et_efr = np.array([0])
|
||||
|
||||
hazard_50_1_et_efr = np.array([0])
|
||||
|
||||
coef_50_1_st_efr = np.array([-0.7417904])
|
||||
|
||||
se_50_1_st_efr = np.array([0.2846437])
|
||||
|
||||
time_50_1_st_efr = np.array([0])
|
||||
|
||||
hazard_50_1_st_efr = np.array([0])
|
||||
|
||||
coef_50_1_et_st_efr = np.array([-0.9276112])
|
||||
|
||||
se_50_1_et_st_efr = np.array([0.3462638])
|
||||
|
||||
time_50_1_et_st_efr = np.array([0])
|
||||
|
||||
hazard_50_1_et_st_efr = np.array([0])
|
||||
|
||||
coef_50_2_bre = np.array([-0.5935189, 0.5035724])
|
||||
|
||||
se_50_2_bre = np.array([0.2172841, 0.2399933])
|
||||
|
||||
time_50_2_bre = np.array([
|
||||
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2,
|
||||
1.3, 1.4, 1.5, 1.9, 2.7, 2.9])
|
||||
|
||||
hazard_50_2_bre = np.array([
|
||||
0.02695812, 0.09162381, 0.1309537, 0.1768423, 0.2033353,
|
||||
0.2033353, 0.3083449, 0.3547287, 0.4076453, 0.4761318,
|
||||
0.5579718, 0.7610905, 0.918962, 0.918962, 1.136173,
|
||||
1.605757, 2.457676, 2.457676])
|
||||
|
||||
coef_50_2_et_bre = np.array([-0.4001465, 0.4415933])
|
||||
|
||||
se_50_2_et_bre = np.array([0.1992302, 0.2525949])
|
||||
|
||||
time_50_2_et_bre = np.array([0])
|
||||
|
||||
hazard_50_2_et_bre = np.array([0])
|
||||
|
||||
coef_50_2_st_bre = np.array([-0.6574891, 0.4416079])
|
||||
|
||||
se_50_2_st_bre = np.array([0.2753398, 0.269458])
|
||||
|
||||
time_50_2_st_bre = np.array([0])
|
||||
|
||||
hazard_50_2_st_bre = np.array([0])
|
||||
|
||||
coef_50_2_et_st_bre = np.array([-0.3607069, 0.2731982])
|
||||
|
||||
se_50_2_et_st_bre = np.array([0.255415, 0.306942])
|
||||
|
||||
time_50_2_et_st_bre = np.array([0])
|
||||
|
||||
hazard_50_2_et_st_bre = np.array([0])
|
||||
|
||||
coef_50_2_efr = np.array([-0.6107485, 0.5309737])
|
||||
|
||||
se_50_2_efr = np.array([0.2177713, 0.2440535])
|
||||
|
||||
time_50_2_efr = np.array([
|
||||
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2,
|
||||
1.3, 1.4, 1.5, 1.9, 2.7, 2.9])
|
||||
|
||||
hazard_50_2_efr = np.array([
|
||||
0.02610571, 0.08933637, 0.1279094, 0.1731699, 0.19933,
|
||||
0.19933, 0.303598, 0.3497025, 0.4023939, 0.4706978,
|
||||
0.5519237, 0.7545023, 0.9129989, 0.9129989, 1.13186,
|
||||
1.60574, 2.472615, 2.472615])
|
||||
|
||||
coef_50_2_et_efr = np.array([-0.4092002, 0.4871344])
|
||||
|
||||
se_50_2_et_efr = np.array([0.1968905, 0.2608527])
|
||||
|
||||
time_50_2_et_efr = np.array([0])
|
||||
|
||||
hazard_50_2_et_efr = np.array([0])
|
||||
|
||||
coef_50_2_st_efr = np.array([-0.6631286, 0.4663285])
|
||||
|
||||
se_50_2_st_efr = np.array([0.2748224, 0.273603])
|
||||
|
||||
time_50_2_st_efr = np.array([0])
|
||||
|
||||
hazard_50_2_st_efr = np.array([0])
|
||||
|
||||
coef_50_2_et_st_efr = np.array([-0.3656059, 0.2943912])
|
||||
|
||||
se_50_2_et_st_efr = np.array([0.2540752, 0.3124632])
|
||||
|
||||
time_50_2_et_st_efr = np.array([0])
|
||||
|
||||
hazard_50_2_et_st_efr = np.array([0])
|
||||
|
||||
coef_100_5_bre = np.array([
|
||||
-0.529776, -0.2916374, -0.1205425, 0.3493476, 0.6034305])
|
||||
|
||||
se_100_5_bre = np.array([
|
||||
0.1789305, 0.1482505, 0.1347422, 0.1528205, 0.1647927])
|
||||
|
||||
time_100_5_bre = np.array([
|
||||
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2,
|
||||
1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.5, 2.8, 3.2, 3.3])
|
||||
|
||||
hazard_100_5_bre = np.array([
|
||||
0.02558588, 0.05608812, 0.1087773, 0.1451098, 0.1896703,
|
||||
0.2235791, 0.3127521, 0.3355107, 0.439452, 0.504983,
|
||||
0.5431706, 0.5841462, 0.5841462, 0.5841462, 0.6916466,
|
||||
0.7540191, 0.8298704, 1.027876, 1.170335, 1.379306,
|
||||
1.648758, 1.943177, 1.943177, 1.943177, 4.727101])
|
||||
|
||||
coef_100_5_et_bre = np.array([
|
||||
-0.4000784, -0.1790941, -0.1378969, 0.3288529, 0.533246])
|
||||
|
||||
se_100_5_et_bre = np.array([
|
||||
0.1745655, 0.1513545, 0.1393968, 0.1487803, 0.1686992])
|
||||
|
||||
time_100_5_et_bre = np.array([0])
|
||||
|
||||
hazard_100_5_et_bre = np.array([0])
|
||||
|
||||
coef_100_5_st_bre = np.array([
|
||||
-0.53019, -0.3225739, -0.1241568, 0.3246598, 0.6196859])
|
||||
|
||||
se_100_5_st_bre = np.array([
|
||||
0.1954581, 0.1602811, 0.1470644, 0.17121, 0.1784115])
|
||||
|
||||
time_100_5_st_bre = np.array([0])
|
||||
|
||||
hazard_100_5_st_bre = np.array([0])
|
||||
|
||||
coef_100_5_et_st_bre = np.array([
|
||||
-0.3977171, -0.2166136, -0.1387623, 0.3251726, 0.5664705])
|
||||
|
||||
se_100_5_et_st_bre = np.array([
|
||||
0.1951054, 0.1707925, 0.1501968, 0.1699932, 0.1843428])
|
||||
|
||||
time_100_5_et_st_bre = np.array([0])
|
||||
|
||||
hazard_100_5_et_st_bre = np.array([0])
|
||||
|
||||
coef_100_5_efr = np.array([
|
||||
-0.5641909, -0.3233021, -0.1234858, 0.3712328, 0.6421963])
|
||||
|
||||
se_100_5_efr = np.array([
|
||||
0.1804027, 0.1496253, 0.1338531, 0.1529832, 0.1670848])
|
||||
|
||||
time_100_5_efr = np.array([
|
||||
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2,
|
||||
1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.5, 2.8, 3.2, 3.3])
|
||||
|
||||
hazard_100_5_efr = np.array([
|
||||
0.02393412, 0.05276399, 0.1028432, 0.1383859, 0.1823461,
|
||||
0.2158107, 0.3037825, 0.3264864, 0.4306648, 0.4964367,
|
||||
0.5348595, 0.5760305, 0.5760305, 0.5760305, 0.6842238,
|
||||
0.7468135, 0.8228841, 1.023195, 1.166635, 1.379361,
|
||||
1.652898, 1.950119, 1.950119, 1.950119, 4.910635])
|
||||
|
||||
coef_100_5_et_efr = np.array([
|
||||
-0.4338666, -0.2140139, -0.1397387, 0.3535993, 0.5768645])
|
||||
|
||||
se_100_5_et_efr = np.array([
|
||||
0.1756485, 0.1527244, 0.138298, 0.1488427, 0.1716654])
|
||||
|
||||
time_100_5_et_efr = np.array([0])
|
||||
|
||||
hazard_100_5_et_efr = np.array([0])
|
||||
|
||||
coef_100_5_st_efr = np.array([
|
||||
-0.5530876, -0.3331652, -0.128381, 0.3503472, 0.6397813])
|
||||
|
||||
se_100_5_st_efr = np.array([
|
||||
0.1969338, 0.1614976, 0.1464088, 0.171299, 0.1800787])
|
||||
|
||||
time_100_5_st_efr = np.array([0])
|
||||
|
||||
hazard_100_5_st_efr = np.array([0])
|
||||
|
||||
coef_100_5_et_st_efr = np.array([
|
||||
-0.421153, -0.2350069, -0.1433638, 0.3538863, 0.5934568])
|
||||
|
||||
se_100_5_et_st_efr = np.array([
|
||||
0.1961729, 0.1724719, 0.1492979, 0.170464, 0.1861849])
|
||||
|
||||
time_100_5_et_st_efr = np.array([0])
|
||||
|
||||
hazard_100_5_et_st_efr = np.array([0])
|
||||
|
||||
coef_1000_10_bre = np.array([
|
||||
-0.4699279, -0.464557, -0.308411, -0.2158298, -0.09048563,
|
||||
0.09359662, 0.112588, 0.3343705, 0.3480601, 0.5634985])
|
||||
|
||||
se_1000_10_bre = np.array([
|
||||
0.04722914, 0.04785291, 0.04503528, 0.04586872, 0.04429793,
|
||||
0.0446141, 0.04139944, 0.04464292, 0.04559903, 0.04864393])
|
||||
|
||||
time_1000_10_bre = np.array([
|
||||
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2,
|
||||
1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4,
|
||||
2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6,
|
||||
3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.6, 4.8, 4.9, 5, 5.1,
|
||||
5.2, 5.7, 5.8, 5.9, 6.9])
|
||||
|
||||
hazard_1000_10_bre = np.array([
|
||||
0.01610374, 0.04853538, 0.08984849, 0.1311329, 0.168397,
|
||||
0.2230488, 0.2755388, 0.3312606, 0.3668702, 0.4146558,
|
||||
0.477935, 0.5290705, 0.5831775, 0.6503129, 0.7113068,
|
||||
0.7830385, 0.8361717, 0.8910061, 0.9615944, 1.024011,
|
||||
1.113399, 1.165349, 1.239827, 1.352902, 1.409548, 1.53197,
|
||||
1.601843, 1.682158, 1.714907, 1.751564, 1.790898, 1.790898,
|
||||
1.83393, 1.83393, 1.936055, 1.992303, 2.050778, 2.118776,
|
||||
2.263056, 2.504999, 2.739343, 2.895514, 3.090349, 3.090349,
|
||||
3.391772, 3.728142, 4.152769, 4.152769, 4.152769, 4.725957,
|
||||
4.725957, 5.69653, 5.69653, 5.69653])
|
||||
|
||||
coef_1000_10_et_bre = np.array([
|
||||
-0.410889, -0.3929442, -0.2975845, -0.1851533, -0.0918359,
|
||||
0.1011997, 0.106735, 0.2899179, 0.3220672, 0.5069589])
|
||||
|
||||
se_1000_10_et_bre = np.array([
|
||||
0.04696754, 0.04732169, 0.04537707, 0.04605371, 0.04365232,
|
||||
0.04450021, 0.04252475, 0.04482007, 0.04562374, 0.04859727])
|
||||
|
||||
time_1000_10_et_bre = np.array([0])
|
||||
|
||||
hazard_1000_10_et_bre = np.array([0])
|
||||
|
||||
coef_1000_10_st_bre = np.array([
|
||||
-0.471015, -0.4766859, -0.3070839, -0.2091938, -0.09190845,
|
||||
0.0964942, 0.1138269, 0.3307131, 0.3543551, 0.562492])
|
||||
|
||||
se_1000_10_st_bre = np.array([
|
||||
0.04814778, 0.04841938, 0.04572291, 0.04641227, 0.04502525,
|
||||
0.04517603, 0.04203737, 0.04524356, 0.04635037, 0.04920866])
|
||||
|
||||
time_1000_10_st_bre = np.array([0])
|
||||
|
||||
hazard_1000_10_st_bre = np.array([0])
|
||||
|
||||
coef_1000_10_et_st_bre = np.array([
|
||||
-0.4165849, -0.4073504, -0.2980959, -0.1765194, -0.09152798,
|
||||
0.1013213, 0.1009838, 0.2859668, 0.3247608, 0.5044448])
|
||||
|
||||
se_1000_10_et_st_bre = np.array([
|
||||
0.04809818, 0.04809499, 0.0460829, 0.04679922, 0.0445294,
|
||||
0.04514045, 0.04339298, 0.04580591, 0.04652447, 0.04920744])
|
||||
|
||||
time_1000_10_et_st_bre = np.array([0])
|
||||
|
||||
hazard_1000_10_et_st_bre = np.array([0])
|
||||
|
||||
coef_1000_10_efr = np.array([
|
||||
-0.4894399, -0.4839746, -0.3227769, -0.2261293, -0.09318482,
|
||||
0.09767154, 0.1173205, 0.3493732, 0.3640146, 0.5879749])
|
||||
|
||||
se_1000_10_efr = np.array([
|
||||
0.0474181, 0.04811855, 0.04507655, 0.04603044, 0.04440409,
|
||||
0.04478202, 0.04136728, 0.04473343, 0.045768, 0.04891375])
|
||||
|
||||
time_1000_10_efr = np.array([
|
||||
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2,
|
||||
1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4,
|
||||
2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6,
|
||||
3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.6, 4.8, 4.9, 5, 5.1,
|
||||
5.2, 5.7, 5.8, 5.9, 6.9])
|
||||
|
||||
hazard_1000_10_efr = np.array([
|
||||
0.01549698, 0.04680035, 0.08682564, 0.1269429, 0.1632388,
|
||||
0.2167291, 0.2682311, 0.3231316, 0.3582936, 0.4054892, 0.4681098,
|
||||
0.5188697, 0.5727059, 0.639571, 0.7003012, 0.7718979, 0.825053,
|
||||
0.880063, 0.950935, 1.013828, 1.103903, 1.156314, 1.231707,
|
||||
1.346235, 1.40359, 1.527475, 1.598231, 1.6795, 1.712779,
|
||||
1.750227, 1.790455, 1.790455, 1.834455, 1.834455, 1.938997,
|
||||
1.996804, 2.056859, 2.126816, 2.275217, 2.524027, 2.76669,
|
||||
2.929268, 3.13247, 3.13247, 3.448515, 3.80143, 4.249649,
|
||||
4.249649, 4.249649, 4.851365, 4.851365, 5.877307, 5.877307, 5.877307])
|
||||
|
||||
coef_1000_10_et_efr = np.array([
|
||||
-0.4373066, -0.4131901, -0.3177637, -0.1978493, -0.09679451,
|
||||
0.1092037, 0.1136069, 0.3088907, 0.3442007, 0.5394121])
|
||||
|
||||
se_1000_10_et_efr = np.array([
|
||||
0.04716041, 0.04755342, 0.04546713, 0.04627802, 0.04376583,
|
||||
0.04474868, 0.04259991, 0.04491564, 0.04589027, 0.04890847])
|
||||
|
||||
time_1000_10_et_efr = np.array([0])
|
||||
|
||||
hazard_1000_10_et_efr = np.array([0])
|
||||
|
||||
coef_1000_10_st_efr = np.array([
|
||||
-0.4911117, -0.4960756, -0.3226152, -0.220949, -0.09478141,
|
||||
0.1015735, 0.1195524, 0.3446977, 0.3695904, 0.5878576])
|
||||
|
||||
se_1000_10_st_efr = np.array([
|
||||
0.04833676, 0.04868554, 0.04578407, 0.04661755, 0.04518267,
|
||||
0.04537135, 0.04202183, 0.04531266, 0.0464931, 0.04949831])
|
||||
|
||||
time_1000_10_st_efr = np.array([0])
|
||||
|
||||
hazard_1000_10_st_efr = np.array([0])
|
||||
|
||||
coef_1000_10_et_st_efr = np.array([
|
||||
-0.444355, -0.4283278, -0.3198815, -0.1901781, -0.09727039,
|
||||
0.1106191, 0.1092104, 0.3034778, 0.3451699, 0.5382381])
|
||||
|
||||
se_1000_10_et_st_efr = np.array([
|
||||
0.04830664, 0.04833619, 0.04617371, 0.04706401, 0.04472699,
|
||||
0.0454208, 0.04350539, 0.04588588, 0.04675675, 0.04950987])
|
||||
|
||||
time_1000_10_et_st_efr = np.array([0])
|
||||
|
||||
hazard_1000_10_et_st_efr = np.array([0])
|
||||
Reference in New Issue
Block a user