some new features
This commit is contained in:
Binary file not shown.
Binary file not shown.
@ -0,0 +1,39 @@
|
||||
food,income,persons
|
||||
15.998,62.476,1
|
||||
16.652,82.304,5
|
||||
21.741,74.679,3
|
||||
7.431,39.151,3
|
||||
10.481,64.724,5
|
||||
13.548,36.786,3
|
||||
23.256,83.052,4
|
||||
17.976,86.935,1
|
||||
14.161,88.233,2
|
||||
8.825,38.695,2
|
||||
14.184,73.831,7
|
||||
19.604,77.122,3
|
||||
13.728,45.519,2
|
||||
21.141,82.251,2
|
||||
17.446,59.862,3
|
||||
9.629,26.563,3
|
||||
14.005,61.818,2
|
||||
9.16,29.682,1
|
||||
18.831,50.825,5
|
||||
7.641,71.062,4
|
||||
13.882,41.99,4
|
||||
9.67,37.324,3
|
||||
21.604,86.352,5
|
||||
10.866,45.506,2
|
||||
28.98,69.929,6
|
||||
10.882,61.041,2
|
||||
18.561,82.469,1
|
||||
11.629,44.208,2
|
||||
18.067,49.467,5
|
||||
14.539,25.905,5
|
||||
19.192,79.178,5
|
||||
25.918,75.811,3
|
||||
28.833,82.718,6
|
||||
15.869,48.311,4
|
||||
14.91,42.494,5
|
||||
9.55,40.573,4
|
||||
23.066,44.872,6
|
||||
14.751,27.167,7
|
||||
|
@ -0,0 +1,37 @@
|
||||
,Unnamed: 0,gender,age,Basename,ID,id,plate,CpG,methylation
|
||||
0,0,F,58.231,6042324088_R04C01,age58.231_F,id_0,6042324088,CpG_0,0.815
|
||||
1,1,M,52.632,6042324088_R06C01,age52.632_M,id_1,6042324088,CpG_0,0.803
|
||||
2,2,M,64.679,6042324088_R01C01,age64.679_M,id_2,6042324088,CpG_0,0.803
|
||||
3,3,F,55.299,6042324088_R04C02,age55.299_F,id_3,6042324088,CpG_0,0.808
|
||||
4,4,M,56.019,6042324088_R02C01,age56.019_M,id_4,6042324088,CpG_0,0.8550000000000001
|
||||
5,5,M,62.021,6042324088_R01C02,age62.021_M,id_5,6042324088,CpG_0,0.8129999999999998
|
||||
6,6,F,52.298,6042324088_R06C02,age52.298_F,id_6,6042324088,CpG_0,0.816
|
||||
7,7,F,39.71,6042324088_R03C01,age39.71_F,id_7,6042324088,CpG_0,0.827
|
||||
8,8,F,57.492,6042324088_R05C02,age57.492_F,id_8,6042324088,CpG_0,0.829
|
||||
9,9,F,57.623999999999995,6042324088_R05C01,age57.624_F,id_9,6042324088,CpG_0,0.7760000000000001
|
||||
10,10,F,40.486999999999995,6042324088_R03C02,age40.487_F,id_10,6042324088,CpG_0,0.7859999999999999
|
||||
11,11,M,53.662,6042324088_R02C02,age53.662_M,id_11,6042324088,CpG_0,0.822
|
||||
12,12,F,58.231,6042324088_R04C01,age58.231_F,id_0,6042324088,CpG_1,0.891
|
||||
13,13,M,52.632,6042324088_R06C01,age52.632_M,id_1,6042324088,CpG_1,0.894
|
||||
14,14,M,64.679,6042324088_R01C01,age64.679_M,id_2,6042324088,CpG_1,0.894
|
||||
15,15,F,55.299,6042324088_R04C02,age55.299_F,id_3,6042324088,CpG_1,0.869
|
||||
16,16,M,56.019,6042324088_R02C01,age56.019_M,id_4,6042324088,CpG_1,0.914
|
||||
17,17,M,62.021,6042324088_R01C02,age62.021_M,id_5,6042324088,CpG_1,0.889
|
||||
18,18,F,52.298,6042324088_R06C02,age52.298_F,id_6,6042324088,CpG_1,0.8850000000000001
|
||||
19,19,F,39.71,6042324088_R03C01,age39.71_F,id_7,6042324088,CpG_1,0.898
|
||||
20,20,F,57.492,6042324088_R05C02,age57.492_F,id_8,6042324088,CpG_1,0.896
|
||||
21,21,F,57.623999999999995,6042324088_R05C01,age57.624_F,id_9,6042324088,CpG_1,0.86
|
||||
22,22,F,40.486999999999995,6042324088_R03C02,age40.487_F,id_10,6042324088,CpG_1,0.887
|
||||
23,23,M,53.662,6042324088_R02C02,age53.662_M,id_11,6042324088,CpG_1,0.8800000000000001
|
||||
24,24,F,58.231,6042324088_R04C01,age58.231_F,id_0,6042324088,CpG_2,0.936
|
||||
25,25,M,52.632,6042324088_R06C01,age52.632_M,id_1,6042324088,CpG_2,0.9129999999999999
|
||||
26,26,M,64.679,6042324088_R01C01,age64.679_M,id_2,6042324088,CpG_2,0.9000000000000001
|
||||
27,27,F,55.299,6042324088_R04C02,age55.299_F,id_3,6042324088,CpG_2,0.9119999999999999
|
||||
28,28,M,56.019,6042324088_R02C01,age56.019_M,id_4,6042324088,CpG_2,0.9349999999999999
|
||||
29,29,M,62.021,6042324088_R01C02,age62.021_M,id_5,6042324088,CpG_2,0.9280000000000002
|
||||
30,30,F,52.298,6042324088_R06C02,age52.298_F,id_6,6042324088,CpG_2,0.9150000000000001
|
||||
31,31,F,39.71,6042324088_R03C01,age39.71_F,id_7,6042324088,CpG_2,0.9160000000000001
|
||||
32,32,F,57.492,6042324088_R05C02,age57.492_F,id_8,6042324088,CpG_2,0.929
|
||||
33,33,F,57.623999999999995,6042324088_R05C01,age57.624_F,id_9,6042324088,CpG_2,0.92
|
||||
34,34,F,40.486999999999995,6042324088_R03C02,age40.487_F,id_10,6042324088,CpG_2,0.9160000000000001
|
||||
35,35,M,53.662,6042324088_R02C02,age53.662_M,id_11,6042324088,CpG_2,0.926
|
||||
|
@ -0,0 +1,37 @@
|
||||
"fittedvalues","pearson","deviance","response","weighted","sweighted","sweighted2"
|
||||
0.808801783033006,0.35152036037566,0.316277475404175,0.00619821696699407,0.0143437070668562,0.319573728733701,0.339140493550815
|
||||
0.819372283335466,-1.04578186069401,-1.05384293226473,-0.0163722833354659,-0.0424402211037504,-1.04203526956567,-1.12150619891079
|
||||
0.819372283335466,-0.848866164111184,-0.868303748623021,-0.0163722833354659,-0.0431126841865535,-0.858858035684054,-0.924509357407569
|
||||
0.808801783033006,-0.0478403593182754,-0.0740190330766135,-0.000801783033005821,-0.00346030425148218,-0.0811185264757917,-0.086082858454213
|
||||
0.819372283335466,2.14604894870802,2.23125643431909,0.0356277166645341,0.0991242044217954,2.29487706595179,2.46999256391156
|
||||
0.819372283335466,-0.345945859185448,-0.379745334132177,-0.00637228333546613,-0.0182042467717062,-0.379769622695936,-0.408782131481404
|
||||
0.808801783033006,0.452417702358772,0.422868818621262,0.00719821696699408,0.0172535750290291,0.426089629903614,0.452154192998679
|
||||
0.808801783033006,1.42260123423979,1.43173413510406,0.0181982169669941,0.0471933178688695,1.44999971504468,1.53857262907721
|
||||
0.808801783033006,1.16025896160801,1.15557258567386,0.0201982169669941,0.0519452178671859,1.17226143527927,1.24402734629728
|
||||
0.808801783033006,-1.87995098901712,-1.83681386957748,-0.0328017830330057,-0.0799212843345725,-1.79947817362265,-1.90964475994369
|
||||
0.808801783033006,-1.75862731269533,-1.73276624166304,-0.022801783033006,-0.0563377478383546,-1.70777742849756,-1.81210402283831
|
||||
0.819372283335466,0.164877426795495,0.125978175853291,0.00262771666453399,0.00542846196158609,0.130924012206529,0.140910550838054
|
||||
0.885906034257019,0.357336625125062,0.301293672955372,0.00509396574298104,0.0138352538385608,0.30824553489262,0.325442400805389
|
||||
0.892778886747752,0.096985881228438,0.0257403439859805,0.0012211132522485,0.00184829475110839,0.0453812037053184,0.0482934532444257
|
||||
0.892778886747752,0.0787239060703272,0.0625155549271173,0.0012211132522485,0.000749754320257284,0.0149360341368548,0.0158983762537736
|
||||
0.885906034257019,-1.24771994382442,-1.2462075883806,-0.016906034257019,-0.0520827370000992,-1.22095474074702,-1.28901416807562
|
||||
0.892778886747752,1.58942674175724,1.63373837694379,0.0212211132522485,0.07283953019518,1.68634662254971,1.79466886330034
|
||||
0.892778886747752,-0.255092478889325,-0.306807633696473,-0.00377888674775151,-0.0148849956658763,-0.31052475055691,-0.330511444147795
|
||||
0.885906034257019,-0.0704363879176134,-0.108791198935213,-0.000906034257018851,-0.00482003763451928,-0.119034347858826,-0.125664526445956
|
||||
0.885906034257019,1.16939404467676,1.16572330650475,0.012093965742981,0.0385653528018314,1.18490822638558,1.25074305918135
|
||||
0.885906034257019,0.71720205631466,0.678301944285756,0.010093965742981,0.0305419280332159,0.689247747193123,0.727692107851627
|
||||
0.885906034257019,-1.83648680424447,-1.7784513791609,-0.025906034257019,-0.0765923381476135,-1.72452484855445,-1.82071787157763
|
||||
0.885906034257019,0.104362993682885,0.0502517218075574,0.00109396574298104,0.00212749934649926,0.0644913135952729,0.068074968576542
|
||||
0.892778886747752,-0.997002863803822,-1.01348529078318,-0.0127788867477514,-0.0413363208029017,-0.996952176817101,-1.06094759772788
|
||||
0.918023532863447,1.4614350478071,1.49772318274252,0.0179764671365528,0.0697476840643581,1.55395863587393,1.63670046801479
|
||||
0.923129550226661,-0.934423619871682,-0.959684761138903,-0.0101295502266615,-0.0383660250384391,-0.942001483577578,-0.99713053437261
|
||||
0.923129550226661,-1.73188460406476,-1.66782538710199,-0.0231295502266613,-0.0802425599096661,-1.59853112100523,-1.69261746277774
|
||||
0.918023532863447,-0.515205295487776,-0.5642053296945,-0.00602353286344737,-0.0239176600611151,-0.560692124132005,-0.590510997925376
|
||||
0.923129550226661,1.03262016372701,1.01116522680603,0.0118704497733385,0.0448548512198665,1.03845846694652,1.09931575827466
|
||||
0.923129550226661,0.381859782258925,0.301449984612702,0.00487044977333873,0.0150633721746665,0.314245969033599,0.332714652297136
|
||||
0.918023532863447,-0.272408599341429,-0.324820914964905,-0.00302353286344714,-0.0132867920220962,-0.328127027921809,-0.345558331766231
|
||||
0.918023532863447,-0.226754579862161,-0.269883188299346,-0.00202353286344714,-0.00888608306610775,-0.273022082268535,-0.287474583737226
|
||||
0.918023532863447,0.903849126847892,0.869867326874846,0.0109764671365528,0.0394710984913298,0.890754692526278,0.938168842232837
|
||||
0.918023532863447,0.162379102254773,0.0659862616502334,0.00197646713655275,0.00424246655240526,0.0955218128304648,0.100606642499834
|
||||
0.918023532863447,-0.223720988594165,-0.26737967038831,-0.00202353286344714,-0.00892954951459952,-0.270683222045707,-0.285014452775087
|
||||
0.923129550226661,0.260108419658216,0.184475101737707,0.00287044977333861,0.00818026681503129,0.197292227508009,0.20884303478398
|
||||
|
@ -0,0 +1,83 @@
|
||||
import numpy as np
|
||||
import os
|
||||
import pandas as pd
|
||||
from statsmodels.tools.testing import Holder
|
||||
|
||||
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
results_meth = Holder()
|
||||
results_meth.type = 'ML'
|
||||
results_meth.method = 'BFGS'
|
||||
results_meth.scoring = 3
|
||||
results_meth.start = np.array([
|
||||
1.44771372395646, 0.0615237727637243, 0.604926837329731, 0.98389051740736,
|
||||
6.25859738441389, 0
|
||||
])
|
||||
results_meth.n = 36
|
||||
results_meth.nobs = 36
|
||||
results_meth.df_null = 34
|
||||
results_meth.df_residual = 30
|
||||
results_meth.loglik = 104.148028405343
|
||||
results_meth.vcov = np.array([
|
||||
0.00115682165449043, -0.000665413980696048, -0.000924081767589657,
|
||||
-0.000924126199147583, 0.000941505276523348, -1.44829373972985e-05,
|
||||
-0.000665413980696048, 0.00190019966824938, 4.45163588328844e-06,
|
||||
6.23668249663711e-06, -0.00216418558500309, 4.18754929463506e-05,
|
||||
-0.000924081767589657, 4.45163588328844e-06, 0.0023369966334575,
|
||||
0.000924223263225116, 0.000168988804218447, 1.14762434349836e-07,
|
||||
-0.000924126199147583, 6.23668249663711e-06, 0.000924223263225116,
|
||||
0.00282071714820361, 0.000331499252772628, 1.93773358431975e-07,
|
||||
0.000941505276523348, -0.00216418558500309, 0.000168988804218447,
|
||||
0.000331499252772628, 3.20761137509433, -0.0581708456538647,
|
||||
-1.44829373972985e-05, 4.18754929463506e-05, 1.14762434349836e-07,
|
||||
1.93773358431975e-07, -0.0581708456538647, 0.00107353277853341
|
||||
]).reshape(6, 6, order='F')
|
||||
results_meth.pseudo_r_squared = 0.905194911478503
|
||||
results_meth.y = np.array([
|
||||
0.815, 0.803, 0.803, 0.808, 0.855, 0.813, 0.816, 0.827, 0.829, 0.776,
|
||||
0.786, 0.822, 0.891, 0.894, 0.894, 0.869, 0.914, 0.889, 0.885, 0.898,
|
||||
0.896, 0.86, 0.887, 0.88, 0.936, 0.913, 0.9, 0.912, 0.935, 0.928, 0.915,
|
||||
0.916, 0.929, 0.92, 0.916, 0.926
|
||||
])
|
||||
|
||||
# > cat_items(summ_meth, prefix="results_meth.")
|
||||
# duplicate deleted
|
||||
|
||||
results_meth.residuals_type = 'sweighted2'
|
||||
results_meth.iterations = np.array([
|
||||
12, 3
|
||||
])
|
||||
|
||||
results_meth.table_mean = np.array([
|
||||
1.44224319715775, 0.0698572427112336, 0.607345321898288, 0.973547608125426,
|
||||
0.0340120810079364, 0.0435912797271355, 0.0483424930413969,
|
||||
0.0531104241011462, 42.4038504677562, 1.60255085761448, 12.5633843785881,
|
||||
18.3306314080896, 0, 0.109033850726723, 3.35661710796797e-36,
|
||||
4.71401008973566e-75
|
||||
]).reshape(4, 4, order='F')
|
||||
|
||||
results_meth.table_precision = np.array([
|
||||
8.22828526376512, -0.0347054296138766, 1.79098056245575,
|
||||
0.0327648100640521, 4.59429065633335, -1.05922877459173,
|
||||
4.34223794561173e-06, 0.289495603466561
|
||||
]).reshape(2, 4, order='F')
|
||||
|
||||
results_meth.aic = -196.296056810686
|
||||
results_meth.bic = -186.79494317995
|
||||
|
||||
results_meth.table_mean_oim = np.array([
|
||||
1.44224320770907, 0.069857238768632, 0.607345313356895, 0.973547591731571,
|
||||
0.0340453325782864, 0.0435867955242771, 0.0490089283252544,
|
||||
0.053386889034385, 42.362435567127, 1.60271563734762, 12.3925442590004,
|
||||
18.2357056075048, 0, 0.108997449531221, 2.86797597854623e-35,
|
||||
2.68762966306205e-74
|
||||
]).reshape(4, 4, order='F')
|
||||
|
||||
results_meth.table_precision_oim = np.array([
|
||||
8.22828540005571, -0.0347054322904486, 1.83887205150239,
|
||||
0.0336205378385678, 4.4746372611042, -1.0322688012039,
|
||||
7.65411434417314e-06, 0.301946212204644
|
||||
]).reshape(2, 4, order='F')
|
||||
|
||||
results_meth.resid = pd.read_csv(os.path.join(cur_dir,
|
||||
'resid_methylation.csv'))
|
||||
Reference in New Issue
Block a user