Files
2025-08-01 04:33:03 -04:00

1940 lines
77 KiB
Python

# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import absolute_import, division, print_function
import dataclasses
import logging
from collections import OrderedDict, defaultdict
from copy import deepcopy
from datetime import timedelta
from typing import Dict, List, Union
import numpy as np
import pandas as pd
from numpy.typing import NDArray
from prophet.make_holidays import get_holiday_names, make_holidays_df
from prophet.models import StanBackendEnum, ModelInputData, ModelParams, TrendIndicator, IStanBackend
from prophet.plot import (plot, plot_components)
logger = logging.getLogger('prophet')
logger.setLevel(logging.INFO)
NANOSECONDS_TO_SECONDS = 1000 * 1000 * 1000
class Prophet(object):
stan_backend: IStanBackend
"""Prophet forecaster.
Parameters
----------
growth: String 'linear', 'logistic' or 'flat' to specify a linear, logistic or
flat trend.
changepoints: List of dates at which to include potential changepoints. If
not specified, potential changepoints are selected automatically.
n_changepoints: Number of potential changepoints to include. Not used
if input `changepoints` is supplied. If `changepoints` is not supplied,
then n_changepoints potential changepoints are selected uniformly from
the first `changepoint_range` proportion of the history.
changepoint_range: Proportion of history in which trend changepoints will
be estimated. Defaults to 0.8 for the first 80%. Not used if
`changepoints` is specified.
yearly_seasonality: Fit yearly seasonality.
Can be 'auto', True, False, or a number of Fourier terms to generate.
weekly_seasonality: Fit weekly seasonality.
Can be 'auto', True, False, or a number of Fourier terms to generate.
daily_seasonality: Fit daily seasonality.
Can be 'auto', True, False, or a number of Fourier terms to generate.
holidays: pd.DataFrame with columns holiday (string) and ds (date type)
and optionally columns lower_window and upper_window which specify a
range of days around the date to be included as holidays.
lower_window=-2 will include 2 days prior to the date as holidays. Also
optionally can have a column prior_scale specifying the prior scale for
that holiday.
seasonality_mode: 'additive' (default) or 'multiplicative'.
seasonality_prior_scale: Parameter modulating the strength of the
seasonality model. Larger values allow the model to fit larger seasonal
fluctuations, smaller values dampen the seasonality. Can be specified
for individual seasonalities using add_seasonality.
holidays_prior_scale: Parameter modulating the strength of the holiday
components model, unless overridden in the holidays input.
changepoint_prior_scale: Parameter modulating the flexibility of the
automatic changepoint selection. Large values will allow many
changepoints, small values will allow few changepoints.
mcmc_samples: Integer, if greater than 0, will do full Bayesian inference
with the specified number of MCMC samples. If 0, will do MAP
estimation.
interval_width: Float, width of the uncertainty intervals provided
for the forecast. If mcmc_samples=0, this will be only the uncertainty
in the trend using the MAP estimate of the extrapolated generative
model. If mcmc.samples>0, this will be integrated over all model
parameters, which will include uncertainty in seasonality.
uncertainty_samples: Number of simulated draws used to estimate
uncertainty intervals. Settings this value to 0 or False will disable
uncertainty estimation and speed up the calculation.
stan_backend: str as defined in StanBackendEnum default: None - will try to
iterate over all available backends and find the working one.
scaling: 'absmax' (default) or 'minmax'.
holidays_mode: 'additive' or 'multiplicative'. Defaults to seasonality_mode.
"""
def __init__(
self,
growth='linear',
changepoints=None,
n_changepoints=25,
changepoint_range=0.8,
yearly_seasonality='auto',
weekly_seasonality='auto',
daily_seasonality='auto',
holidays=None,
seasonality_mode='additive',
seasonality_prior_scale=10.0,
holidays_prior_scale=10.0,
changepoint_prior_scale=0.05,
mcmc_samples=0,
interval_width=0.80,
uncertainty_samples=1000,
stan_backend=None,
scaling: str = 'absmax',
holidays_mode=None,
):
self.growth = growth
self.changepoints = changepoints
if self.changepoints is not None:
self.changepoints = pd.Series(pd.to_datetime(self.changepoints), name='ds')
self.n_changepoints = len(self.changepoints)
self.specified_changepoints = True
else:
self.n_changepoints = n_changepoints
self.specified_changepoints = False
self.changepoint_range = changepoint_range
self.yearly_seasonality = yearly_seasonality
self.weekly_seasonality = weekly_seasonality
self.daily_seasonality = daily_seasonality
self.holidays = holidays
self.seasonality_mode = seasonality_mode
self.holidays_mode = holidays_mode
if holidays_mode is None:
self.holidays_mode = self.seasonality_mode
self.seasonality_prior_scale = float(seasonality_prior_scale)
self.changepoint_prior_scale = float(changepoint_prior_scale)
self.holidays_prior_scale = float(holidays_prior_scale)
self.mcmc_samples = mcmc_samples
self.interval_width = interval_width
self.uncertainty_samples = uncertainty_samples
if scaling not in ("absmax", "minmax"):
raise ValueError("scaling must be one of 'absmax' or 'minmax'")
self.scaling = scaling
# Set during fitting or by other methods
self.start = None
self.y_min = None
self.y_scale = None
self.logistic_floor = False
self.t_scale = None
self.changepoints_t = None
self.seasonalities = OrderedDict({})
self.extra_regressors = OrderedDict({})
self.country_holidays = None
self.stan_fit = None
self.params = {}
self.history = None
self.history_dates = None
self.train_component_cols = None
self.component_modes = None
self.train_holiday_names = None
self.fit_kwargs = {}
self.validate_inputs()
self._load_stan_backend(stan_backend)
def _load_stan_backend(self, stan_backend):
if stan_backend is None:
for i in StanBackendEnum:
try:
logger.debug("Trying to load backend: %s", i.name)
return self._load_stan_backend(i.name)
except Exception as e:
logger.debug("Unable to load backend %s (%s), trying the next one", i.name, e)
else:
self.stan_backend = StanBackendEnum.get_backend_class(stan_backend)()
logger.debug("Loaded stan backend: %s", self.stan_backend.get_type())
def validate_inputs(self):
"""Validates the inputs to Prophet."""
if self.growth not in ('linear', 'logistic', 'flat'):
raise ValueError(
'Parameter "growth" should be "linear", "logistic" or "flat".')
if not isinstance(self.changepoint_range, (int, float)):
raise ValueError("changepoint_range must be a number in [0, 1]'")
if ((self.changepoint_range < 0) or (self.changepoint_range > 1)):
raise ValueError('Parameter "changepoint_range" must be in [0, 1]')
if self.holidays is not None:
if not (
isinstance(self.holidays, pd.DataFrame)
and 'ds' in self.holidays # noqa W503
and 'holiday' in self.holidays # noqa W503
):
raise ValueError('holidays must be a DataFrame with "ds" and '
'"holiday" columns.')
self.holidays['ds'] = pd.to_datetime(self.holidays['ds'])
if (
self.holidays['ds'].isnull().any()
or self.holidays['holiday'].isnull().any()
):
raise ValueError('Found a NaN in holidays dataframe.')
has_lower = 'lower_window' in self.holidays
has_upper = 'upper_window' in self.holidays
if has_lower + has_upper == 1:
raise ValueError('Holidays must have both lower_window and ' +
'upper_window, or neither')
if has_lower:
if self.holidays['lower_window'].max() > 0:
raise ValueError('Holiday lower_window should be <= 0')
if self.holidays['upper_window'].min() < 0:
raise ValueError('Holiday upper_window should be >= 0')
for h in self.holidays['holiday'].unique():
self.validate_column_name(h, check_holidays=False)
if self.seasonality_mode not in ['additive', 'multiplicative']:
raise ValueError(
'seasonality_mode must be "additive" or "multiplicative"'
)
if self.holidays_mode not in ['additive', 'multiplicative']:
raise ValueError(
'holidays_mode must be "additive" or "multiplicative"'
)
def validate_column_name(self, name, check_holidays=True,
check_seasonalities=True, check_regressors=True):
"""Validates the name of a seasonality, holiday, or regressor.
Parameters
----------
name: string
check_holidays: bool check if name already used for holiday
check_seasonalities: bool check if name already used for seasonality
check_regressors: bool check if name already used for regressor
"""
if '_delim_' in name:
raise ValueError('Name cannot contain "_delim_"')
reserved_names = [
'trend', 'additive_terms', 'daily', 'weekly', 'yearly',
'holidays', 'zeros', 'extra_regressors_additive', 'yhat',
'extra_regressors_multiplicative', 'multiplicative_terms',
]
rn_l = [n + '_lower' for n in reserved_names]
rn_u = [n + '_upper' for n in reserved_names]
reserved_names.extend(rn_l)
reserved_names.extend(rn_u)
reserved_names.extend([
'ds', 'y', 'cap', 'floor', 'y_scaled', 'cap_scaled'])
if name in reserved_names:
raise ValueError(
'Name {name!r} is reserved.'.format(name=name)
)
if (check_holidays and self.holidays is not None and
name in self.holidays['holiday'].unique()):
raise ValueError(
'Name {name!r} already used for a holiday.'.format(name=name)
)
if (check_holidays and self.country_holidays is not None and
name in get_holiday_names(self.country_holidays)):
raise ValueError(
'Name {name!r} is a holiday name in {country_holidays}.'
.format(name=name, country_holidays=self.country_holidays)
)
if check_seasonalities and name in self.seasonalities:
raise ValueError(
'Name {name!r} already used for a seasonality.'
.format(name=name)
)
if check_regressors and name in self.extra_regressors:
raise ValueError(
'Name {name!r} already used for an added regressor.'
.format(name=name)
)
def setup_dataframe(self, df, initialize_scales=False):
"""Prepare dataframe for fitting or predicting.
Adds a time index and scales y. Creates auxiliary columns 't', 't_ix',
'y_scaled', and 'cap_scaled'. These columns are used during both
fitting and predicting.
Parameters
----------
df: pd.DataFrame with columns ds, y, and cap if logistic growth. Any
specified additional regressors must also be present.
initialize_scales: Boolean set scaling factors in self from df.
Returns
-------
pd.DataFrame prepared for fitting or predicting.
"""
if 'y' in df: # 'y' will be in training data
df['y'] = pd.to_numeric(df['y'])
if np.isinf(df['y'].values).any():
raise ValueError('Found infinity in column y.')
if df['ds'].dtype == np.int64:
df['ds'] = df['ds'].astype(str)
df['ds'] = pd.to_datetime(df['ds'])
if df['ds'].dt.tz is not None:
raise ValueError(
'Column ds has timezone specified, which is not supported. '
'Remove timezone.'
)
if df['ds'].isnull().any():
raise ValueError('Found NaN in column ds.')
for name in self.extra_regressors:
if name not in df:
raise ValueError(
'Regressor {name!r} missing from dataframe'
.format(name=name)
)
df[name] = pd.to_numeric(df[name])
if df[name].isnull().any():
raise ValueError(
'Found NaN in column {name!r}'.format(name=name)
)
for props in self.seasonalities.values():
condition_name = props['condition_name']
if condition_name is not None:
if condition_name not in df:
raise ValueError(
'Condition {condition_name!r} missing from dataframe'
.format(condition_name=condition_name)
)
if not df[condition_name].isin([True, False]).all():
raise ValueError(
'Found non-boolean in column {condition_name!r}'
.format(condition_name=condition_name)
)
df[condition_name] = df[condition_name].astype('bool')
if df.index.name == 'ds':
df.index.name = None
df = df.sort_values('ds', kind='mergesort')
df = df.reset_index(drop=True)
self.initialize_scales(initialize_scales, df)
if self.logistic_floor:
if 'floor' not in df:
raise ValueError('Expected column "floor".')
else:
if self.scaling == "absmax":
df['floor'] = 0.
elif self.scaling == "minmax":
df['floor'] = self.y_min
if self.growth == 'logistic':
if 'cap' not in df:
raise ValueError(
'Capacities must be supplied for logistic growth in '
'column "cap"'
)
if (df['cap'] <= df['floor']).any():
raise ValueError(
'cap must be greater than floor (which defaults to 0).'
)
df['cap_scaled'] = (df['cap'] - df['floor']) / self.y_scale
df['t'] = (df['ds'] - self.start) / self.t_scale
if 'y' in df:
df['y_scaled'] = (df['y'] - df['floor']) / self.y_scale
for name, props in self.extra_regressors.items():
df[name] = ((df[name] - props['mu']) / props['std'])
return df
def initialize_scales(self, initialize_scales, df):
"""Initialize model scales.
Sets model scaling factors using df.
Parameters
----------
initialize_scales: Boolean set the scales or not.
df: pd.DataFrame for setting scales.
"""
if not initialize_scales:
return
if self.growth == 'logistic' and 'floor' in df:
self.logistic_floor = True
if self.scaling == "absmax":
self.y_min = float((df['y'] - df['floor']).abs().min())
self.y_scale = float((df['y'] - df['floor']).abs().max())
elif self.scaling == "minmax":
self.y_min = df['floor'].min()
self.y_scale = float(df['cap'].max() - self.y_min)
else:
if self.scaling == "absmax":
self.y_min = 0.
self.y_scale = float((df['y']).abs().max())
elif self.scaling == "minmax":
self.y_min = df['y'].min()
self.y_scale = float(df['y'].max() - self.y_min)
if self.y_scale == 0:
self.y_scale = 1.0
self.start = df['ds'].min()
self.t_scale = df['ds'].max() - self.start
for name, props in self.extra_regressors.items():
standardize = props['standardize']
n_vals = len(df[name].unique())
if n_vals < 2:
standardize = False
if standardize == 'auto':
if set(df[name].unique()) == {1, 0}:
standardize = False # Don't standardize binary variables.
else:
standardize = True
if standardize:
mu = float(df[name].mean())
std = float(df[name].std())
self.extra_regressors[name]['mu'] = mu
self.extra_regressors[name]['std'] = std
def set_changepoints(self):
"""Set changepoints
Sets m$changepoints to the dates of changepoints. Either:
1) The changepoints were passed in explicitly.
A) They are empty.
B) They are not empty, and need validation.
2) We are generating a grid of them.
3) The user prefers no changepoints be used.
"""
if self.changepoints is not None:
if len(self.changepoints) == 0:
pass
else:
too_low = min(self.changepoints) < self.history['ds'].min()
too_high = max(self.changepoints) > self.history['ds'].max()
if too_low or too_high:
raise ValueError(
'Changepoints must fall within training data.')
else:
# Place potential changepoints evenly through first
# `changepoint_range` proportion of the history
hist_size = int(np.floor(self.history.shape[0]
* self.changepoint_range))
if self.n_changepoints + 1 > hist_size:
self.n_changepoints = hist_size - 1
logger.info(
'n_changepoints greater than number of observations. '
'Using {n_changepoints}.'
.format(n_changepoints=self.n_changepoints)
)
if self.n_changepoints > 0:
cp_indexes = (
np.linspace(0, hist_size - 1, self.n_changepoints + 1)
.round()
.astype(int)
)
self.changepoints = (
self.history.iloc[cp_indexes]['ds'].tail(-1)
)
else:
# set empty changepoints
self.changepoints = pd.Series(pd.to_datetime([]), name='ds')
if len(self.changepoints) > 0:
self.changepoints_t = np.sort(np.array(
(self.changepoints - self.start) / self.t_scale))
else:
self.changepoints_t = np.array([0]) # dummy changepoint
@staticmethod
def fourier_series(
dates: pd.Series,
period: Union[int, float],
series_order: int,
) -> NDArray[np.float64]:
"""Provides Fourier series components with the specified frequency
and order.
Parameters
----------
dates: pd.Series containing timestamps.
period: Number of days of the period.
series_order: Number of components.
Returns
-------
Matrix with seasonality features.
"""
if not (series_order >= 1):
raise ValueError("series_order must be >= 1")
# convert to days since epoch
t = dates.to_numpy(dtype=np.int64) // NANOSECONDS_TO_SECONDS / (3600 * 24.)
x_T = t * np.pi * 2
fourier_components = np.empty((dates.shape[0], 2 * series_order))
for i in range(series_order):
c = x_T * (i + 1) / period
fourier_components[:, 2 * i] = np.sin(c)
fourier_components[:, (2 * i) + 1] = np.cos(c)
return fourier_components
@classmethod
def make_seasonality_features(cls, dates, period, series_order, prefix):
"""Data frame with seasonality features.
Parameters
----------
cls: Prophet class.
dates: pd.Series containing timestamps.
period: Number of days of the period.
series_order: Number of components.
prefix: Column name prefix.
Returns
-------
pd.DataFrame with seasonality features.
"""
features = cls.fourier_series(dates, period, series_order)
columns = [
'{}_delim_{}'.format(prefix, i + 1)
for i in range(features.shape[1])
]
return pd.DataFrame(features, columns=columns)
def construct_holiday_dataframe(self, dates):
"""Construct a dataframe of holiday dates.
Will combine self.holidays with the built-in country holidays
corresponding to input dates, if self.country_holidays is set.
Parameters
----------
dates: pd.Series containing timestamps used for computing seasonality.
Returns
-------
dataframe of holiday dates, in holiday dataframe format used in
initialization.
"""
all_holidays = pd.DataFrame()
if self.holidays is not None:
all_holidays = self.holidays.copy()
if self.country_holidays is not None:
year_list = list({x.year for x in dates})
country_holidays_df = make_holidays_df(
year_list=year_list, country=self.country_holidays
)
all_holidays = pd.concat((all_holidays, country_holidays_df),
sort=False)
all_holidays.reset_index(drop=True, inplace=True)
# Drop future holidays not previously seen in training data
if self.train_holiday_names is not None:
# Remove holiday names didn't show up in fit
index_to_drop = all_holidays.index[
np.logical_not(
all_holidays.holiday.isin(self.train_holiday_names)
)
]
all_holidays = all_holidays.drop(index_to_drop)
# Add holiday names in fit but not in predict with ds as NA
holidays_to_add = pd.DataFrame({
'holiday': self.train_holiday_names[
np.logical_not(self.train_holiday_names
.isin(all_holidays.holiday))
]
})
all_holidays = pd.concat((all_holidays, holidays_to_add),
sort=False)
all_holidays.reset_index(drop=True, inplace=True)
return all_holidays
def make_holiday_features(self, dates, holidays):
"""Construct a dataframe of holiday features.
Parameters
----------
dates: pd.Series containing timestamps used for computing seasonality.
holidays: pd.Dataframe containing holidays, as returned by
construct_holiday_dataframe.
Returns
-------
holiday_features: pd.DataFrame with a column for each holiday.
prior_scale_list: List of prior scales for each holiday column.
holiday_names: List of names of holidays
"""
# Holds columns of our future matrix.
expanded_holidays = defaultdict(lambda: np.zeros(dates.shape[0]))
prior_scales = {}
# Makes an index so we can perform `get_loc` below.
# Strip to just dates.
row_index = pd.DatetimeIndex(dates.dt.date)
for row in holidays.itertuples():
dt = row.ds.date()
try:
lw = int(getattr(row, 'lower_window', 0))
uw = int(getattr(row, 'upper_window', 0))
except ValueError:
lw = 0
uw = 0
ps = float(getattr(row, 'prior_scale', self.holidays_prior_scale))
if np.isnan(ps):
ps = float(self.holidays_prior_scale)
if row.holiday in prior_scales and prior_scales[row.holiday] != ps:
raise ValueError(
'Holiday {holiday!r} does not have consistent prior '
'scale specification.'.format(holiday=row.holiday)
)
if ps <= 0:
raise ValueError('Prior scale must be > 0')
prior_scales[row.holiday] = ps
for offset in range(lw, uw + 1):
occurrence = pd.to_datetime(dt + timedelta(days=offset))
try:
loc = row_index.get_loc(occurrence)
except KeyError:
loc = None
key = '{}_delim_{}{}'.format(
row.holiday,
'+' if offset >= 0 else '-',
abs(offset)
)
if loc is not None:
expanded_holidays[key][loc] = 1.
else:
expanded_holidays[key] # Access key to generate value
holiday_features = pd.DataFrame(expanded_holidays)
# Make sure column order is consistent
holiday_features = holiday_features[sorted(holiday_features.columns
.tolist())]
prior_scale_list = [
prior_scales[h.split('_delim_')[0]]
for h in holiday_features.columns
]
holiday_names = list(prior_scales.keys())
# Store holiday names used in fit
if self.train_holiday_names is None:
self.train_holiday_names = pd.Series(holiday_names)
return holiday_features, prior_scale_list, holiday_names
def add_regressor(self, name, prior_scale=None, standardize='auto',
mode=None):
"""Add an additional regressor to be used for fitting and predicting.
The dataframe passed to `fit` and `predict` will have a column with the
specified name to be used as a regressor. When standardize='auto', the
regressor will be standardized unless it is binary. The regression
coefficient is given a prior with the specified scale parameter.
Decreasing the prior scale will add additional regularization. If no
prior scale is provided, self.holidays_prior_scale will be used.
Mode can be specified as either 'additive' or 'multiplicative'. If not
specified, self.seasonality_mode will be used. 'additive' means the
effect of the regressor will be added to the trend, 'multiplicative'
means it will multiply the trend.
Parameters
----------
name: string name of the regressor.
prior_scale: optional float scale for the normal prior. If not
provided, self.holidays_prior_scale will be used.
standardize: optional, specify whether this regressor will be
standardized prior to fitting. Can be 'auto' (standardize if not
binary), True, or False.
mode: optional, 'additive' or 'multiplicative'. Defaults to
self.seasonality_mode.
Returns
-------
The prophet object.
"""
if self.history is not None:
raise Exception(
"Regressors must be added prior to model fitting.")
self.validate_column_name(name, check_regressors=False)
if prior_scale is None:
prior_scale = float(self.holidays_prior_scale)
if mode is None:
mode = self.seasonality_mode
if prior_scale <= 0:
raise ValueError('Prior scale must be > 0')
if mode not in ['additive', 'multiplicative']:
raise ValueError("mode must be 'additive' or 'multiplicative'")
self.extra_regressors[name] = {
'prior_scale': prior_scale,
'standardize': standardize,
'mu': 0.,
'std': 1.,
'mode': mode,
}
return self
def add_seasonality(self, name, period, fourier_order, prior_scale=None,
mode=None, condition_name=None):
"""Add a seasonal component with specified period, number of Fourier
components, and prior scale.
Increasing the number of Fourier components allows the seasonality to
change more quickly (at risk of overfitting). Default values for yearly
and weekly seasonalities are 10 and 3 respectively.
Increasing prior scale will allow this seasonality component more
flexibility, decreasing will dampen it. If not provided, will use the
seasonality_prior_scale provided on Prophet initialization (defaults
to 10).
Mode can be specified as either 'additive' or 'multiplicative'. If not
specified, self.seasonality_mode will be used (defaults to additive).
Additive means the seasonality will be added to the trend,
multiplicative means it will multiply the trend.
If condition_name is provided, the dataframe passed to `fit` and
`predict` should have a column with the specified condition_name
containing booleans which decides when to apply seasonality.
Parameters
----------
name: string name of the seasonality component.
period: float number of days in one period.
fourier_order: int number of Fourier components to use.
prior_scale: optional float prior scale for this component.
mode: optional 'additive' or 'multiplicative'
condition_name: string name of the seasonality condition.
Returns
-------
The prophet object.
"""
if self.history is not None:
raise Exception(
'Seasonality must be added prior to model fitting.')
if name not in ['daily', 'weekly', 'yearly']:
# Allow overwriting built-in seasonalities
self.validate_column_name(name, check_seasonalities=False)
if prior_scale is None:
ps = self.seasonality_prior_scale
else:
ps = float(prior_scale)
if ps <= 0:
raise ValueError('Prior scale must be > 0')
if fourier_order <= 0:
raise ValueError('Fourier Order must be > 0')
if mode is None:
mode = self.seasonality_mode
if mode not in ['additive', 'multiplicative']:
raise ValueError('mode must be "additive" or "multiplicative"')
if condition_name is not None:
self.validate_column_name(condition_name)
self.seasonalities[name] = {
'period': period,
'fourier_order': fourier_order,
'prior_scale': ps,
'mode': mode,
'condition_name': condition_name,
}
return self
def add_country_holidays(self, country_name):
"""Add in built-in holidays for the specified country.
These holidays will be included in addition to any specified on model
initialization.
Holidays will be calculated for arbitrary date ranges in the history
and future. See the online documentation for the list of countries with
built-in holidays.
Built-in country holidays can only be set for a single country.
Parameters
----------
country_name: Name of the country, like 'UnitedStates' or 'US'
Returns
-------
The prophet object.
"""
if self.history is not None:
raise Exception(
"Country holidays must be added prior to model fitting."
)
# Validate names.
for name in get_holiday_names(country_name):
# Allow merging with existing holidays
self.validate_column_name(name, check_holidays=False)
# Set the holidays.
if self.country_holidays is not None:
logger.warning(
'Changing country holidays from {country_holidays!r} to '
'{country_name!r}.'
.format(
country_holidays=self.country_holidays,
country_name=country_name,
)
)
self.country_holidays = country_name
return self
def make_all_seasonality_features(self, df):
"""Dataframe with seasonality features.
Includes seasonality features, holiday features, and added regressors.
Parameters
----------
df: pd.DataFrame with dates for computing seasonality features and any
added regressors.
Returns
-------
pd.DataFrame with regression features.
list of prior scales for each column of the features dataframe.
Dataframe with indicators for which regression components correspond to
which columns.
Dictionary with keys 'additive' and 'multiplicative' listing the
component names for each mode of seasonality.
"""
seasonal_features = []
prior_scales = []
modes = {'additive': [], 'multiplicative': []}
# Seasonality features
for name, props in self.seasonalities.items():
features = self.make_seasonality_features(
df['ds'],
props['period'],
props['fourier_order'],
name,
)
if props['condition_name'] is not None:
features[~df[props['condition_name']]] = 0
seasonal_features.append(features)
prior_scales.extend(
[props['prior_scale']] * features.shape[1])
modes[props['mode']].append(name)
# Holiday features
holidays = self.construct_holiday_dataframe(df['ds'])
if len(holidays) > 0:
features, holiday_priors, holiday_names = (
self.make_holiday_features(df['ds'], holidays)
)
seasonal_features.append(features)
prior_scales.extend(holiday_priors)
modes[self.holidays_mode].extend(holiday_names)
# Additional regressors
for name, props in self.extra_regressors.items():
seasonal_features.append(pd.DataFrame(df[name]))
prior_scales.append(props['prior_scale'])
modes[props['mode']].append(name)
# Dummy to prevent empty X
if len(seasonal_features) == 0:
seasonal_features.append(
pd.DataFrame({'zeros': np.zeros(df.shape[0])}))
prior_scales.append(1.)
seasonal_features = pd.concat(seasonal_features, axis=1)
component_cols, modes = self.regressor_column_matrix(
seasonal_features, modes
)
return seasonal_features, prior_scales, component_cols, modes
def regressor_column_matrix(self, seasonal_features, modes):
"""Dataframe indicating which columns of the feature matrix correspond
to which seasonality/regressor components.
Includes combination components, like 'additive_terms'. These
combination components will be added to the 'modes' input.
Parameters
----------
seasonal_features: Constructed seasonal features dataframe
modes: Dictionary with keys 'additive' and 'multiplicative' listing the
component names for each mode of seasonality.
Returns
-------
component_cols: A binary indicator dataframe with columns seasonal
components and rows columns in seasonal_features. Entry is 1 if
that columns is used in that component.
modes: Updated input with combination components.
"""
components = pd.DataFrame({
'col': np.arange(seasonal_features.shape[1]),
'component': [
x.split('_delim_')[0] for x in seasonal_features.columns
],
})
# Add total for holidays
if self.train_holiday_names is not None:
components = self.add_group_component(
components, 'holidays', self.train_holiday_names.unique())
# Add totals additive and multiplicative components, and regressors
for mode in ['additive', 'multiplicative']:
components = self.add_group_component(
components, mode + '_terms', modes[mode]
)
regressors_by_mode = [
r for r, props in self.extra_regressors.items()
if props['mode'] == mode
]
components = self.add_group_component(
components, 'extra_regressors_' + mode, regressors_by_mode)
# Add combination components to modes
modes[mode].append(mode + '_terms')
modes[mode].append('extra_regressors_' + mode)
# After all of the additive/multiplicative groups have been added,
modes[self.holidays_mode].append('holidays')
# Convert to a binary matrix
component_cols = pd.crosstab(
components['col'], components['component'],
).sort_index(level='col')
# Add columns for additive and multiplicative terms, if missing
for name in ['additive_terms', 'multiplicative_terms']:
if name not in component_cols:
component_cols[name] = 0
# Remove the placeholder
component_cols.drop('zeros', axis=1, inplace=True, errors='ignore')
# Validation
if (max(component_cols['additive_terms']
+ component_cols['multiplicative_terms']) > 1):
raise Exception('A bug occurred in seasonal components.')
# Compare to the training, if set.
if self.train_component_cols is not None:
component_cols = component_cols[self.train_component_cols.columns]
if not component_cols.equals(self.train_component_cols):
raise Exception('A bug occurred in constructing regressors.')
return component_cols, modes
def add_group_component(self, components, name, group):
"""Adds a component with given name that contains all of the components
in group.
Parameters
----------
components: Dataframe with components.
name: Name of new group component.
group: List of components that form the group.
Returns
-------
Dataframe with components.
"""
new_comp = components[components['component'].isin(set(group))].copy()
group_cols = new_comp['col'].unique()
if len(group_cols) > 0:
new_comp = pd.DataFrame({'col': group_cols, 'component': name})
components = pd.concat([components, new_comp])
return components
def parse_seasonality_args(self, name, arg, auto_disable, default_order):
"""Get number of fourier components for built-in seasonalities.
Parameters
----------
name: string name of the seasonality component.
arg: 'auto', True, False, or number of fourier components as provided.
auto_disable: bool if seasonality should be disabled when 'auto'.
default_order: int default fourier order
Returns
-------
Number of fourier components, or 0 for disabled.
"""
if arg == 'auto':
fourier_order = 0
if name in self.seasonalities:
logger.info(
'Found custom seasonality named {name!r}, disabling '
'built-in {name!r} seasonality.'.format(name=name)
)
elif auto_disable:
logger.info(
'Disabling {name} seasonality. Run prophet with '
'{name}_seasonality=True to override this.'
.format(name=name)
)
else:
fourier_order = default_order
elif arg is True:
fourier_order = default_order
elif arg is False:
fourier_order = 0
else:
fourier_order = int(arg)
return fourier_order
def set_auto_seasonalities(self):
"""Set seasonalities that were left on auto.
Turns on yearly seasonality if there is >=2 years of history.
Turns on weekly seasonality if there is >=2 weeks of history, and the
spacing between dates in the history is <7 days.
Turns on daily seasonality if there is >=2 days of history, and the
spacing between dates in the history is <1 day.
"""
first = self.history['ds'].min()
last = self.history['ds'].max()
dt = self.history['ds'].diff()
min_dt = dt.iloc[dt.values.nonzero()[0]].min()
# Yearly seasonality
yearly_disable = last - first < pd.Timedelta(days=730)
fourier_order = self.parse_seasonality_args(
'yearly', self.yearly_seasonality, yearly_disable, 10)
if fourier_order > 0:
self.seasonalities['yearly'] = {
'period': 365.25,
'fourier_order': fourier_order,
'prior_scale': self.seasonality_prior_scale,
'mode': self.seasonality_mode,
'condition_name': None
}
# Weekly seasonality
weekly_disable = ((last - first < pd.Timedelta(weeks=2)) or
(min_dt >= pd.Timedelta(weeks=1)))
fourier_order = self.parse_seasonality_args(
'weekly', self.weekly_seasonality, weekly_disable, 3)
if fourier_order > 0:
self.seasonalities['weekly'] = {
'period': 7,
'fourier_order': fourier_order,
'prior_scale': self.seasonality_prior_scale,
'mode': self.seasonality_mode,
'condition_name': None
}
# Daily seasonality
daily_disable = ((last - first < pd.Timedelta(days=2)) or
(min_dt >= pd.Timedelta(days=1)))
fourier_order = self.parse_seasonality_args(
'daily', self.daily_seasonality, daily_disable, 4)
if fourier_order > 0:
self.seasonalities['daily'] = {
'period': 1,
'fourier_order': fourier_order,
'prior_scale': self.seasonality_prior_scale,
'mode': self.seasonality_mode,
'condition_name': None
}
@staticmethod
def linear_growth_init(df):
"""Initialize linear growth.
Provides a strong initialization for linear growth by calculating the
growth and offset parameters that pass the function through the first
and last points in the time series.
Parameters
----------
df: pd.DataFrame with columns ds (date), y_scaled (scaled time series),
and t (scaled time).
Returns
-------
A tuple (k, m) with the rate (k) and offset (m) of the linear growth
function.
"""
i0, i1 = df['ds'].idxmin(), df['ds'].idxmax()
T = df['t'].iloc[i1] - df['t'].iloc[i0]
k = (df['y_scaled'].iloc[i1] - df['y_scaled'].iloc[i0]) / T
m = df['y_scaled'].iloc[i0] - k * df['t'].iloc[i0]
return (k, m)
@staticmethod
def logistic_growth_init(df):
"""Initialize logistic growth.
Provides a strong initialization for logistic growth by calculating the
growth and offset parameters that pass the function through the first
and last points in the time series.
Parameters
----------
df: pd.DataFrame with columns ds (date), cap_scaled (scaled capacity),
y_scaled (scaled time series), and t (scaled time).
Returns
-------
A tuple (k, m) with the rate (k) and offset (m) of the logistic growth
function.
"""
i0, i1 = df['ds'].idxmin(), df['ds'].idxmax()
T = df['t'].iloc[i1] - df['t'].iloc[i0]
# Force valid values, in case y > cap or y < 0
C0 = df['cap_scaled'].iloc[i0]
C1 = df['cap_scaled'].iloc[i1]
y0 = max(0.01 * C0, min(0.99 * C0, df['y_scaled'].iloc[i0]))
y1 = max(0.01 * C1, min(0.99 * C1, df['y_scaled'].iloc[i1]))
r0 = C0 / y0
r1 = C1 / y1
if abs(r0 - r1) <= 0.01:
r0 = 1.05 * r0
L0 = np.log(r0 - 1)
L1 = np.log(r1 - 1)
# Initialize the offset
m = L0 * T / (L0 - L1)
# And the rate
k = (L0 - L1) / T
return (k, m)
@staticmethod
def flat_growth_init(df):
"""Initialize flat growth.
Provides a strong initialization for flat growth. Sets the growth to 0
and offset parameter as mean of history y_scaled values.
Parameters
----------
df: pd.DataFrame with columns ds (date), y_scaled (scaled time series),
and t (scaled time).
Returns
-------
A tuple (k, m) with the rate (k) and offset (m) of the linear growth
function.
"""
k = 0
m = df['y_scaled'].mean()
return k, m
def preprocess(self, df: pd.DataFrame, **kwargs) -> ModelInputData:
"""
Reformats historical data, standardizes y and extra regressors, sets seasonalities and changepoints.
Saves the preprocessed data to the instantiated object, and also returns the relevant components
as a ModelInputData object.
"""
if ('ds' not in df) or ('y' not in df):
raise ValueError(
'Dataframe must have columns "ds" and "y" with the dates and '
'values respectively.'
)
history = df[df['y'].notnull()].copy()
if history.shape[0] < 2:
raise ValueError('Dataframe has less than 2 non-NaN rows.')
self.history_dates = pd.to_datetime(pd.Series(df['ds'].unique(), name='ds')).sort_values()
self.history = self.setup_dataframe(history, initialize_scales=True)
self.set_auto_seasonalities()
seasonal_features, prior_scales, component_cols, modes = (
self.make_all_seasonality_features(self.history))
self.train_component_cols = component_cols
self.component_modes = modes
self.fit_kwargs = deepcopy(kwargs)
self.set_changepoints()
if self.growth in ['linear', 'flat']:
cap = np.zeros(self.history.shape[0])
else:
cap = self.history['cap_scaled']
return ModelInputData(
T=self.history.shape[0],
S=len(self.changepoints_t),
K=seasonal_features.shape[1],
tau=self.changepoint_prior_scale,
trend_indicator=TrendIndicator[self.growth.upper()].value,
y=self.history['y_scaled'],
t=self.history['t'],
t_change=self.changepoints_t,
X=seasonal_features,
sigmas=prior_scales,
s_a=component_cols['additive_terms'],
s_m=component_cols['multiplicative_terms'],
cap=cap,
)
def calculate_initial_params(self, num_total_regressors: int) -> ModelParams:
"""
Calculates initial parameters for the model based on the preprocessed history.
Parameters
----------
num_total_regressors: the count of seasonality fourier components plus holidays plus extra regressors.
"""
if self.growth == 'linear':
k, m = self.linear_growth_init(self.history)
elif self.growth == 'flat':
k, m = self.flat_growth_init(self.history)
elif self.growth == 'logistic':
k, m = self.logistic_growth_init(self.history)
return ModelParams(
k=k,
m=m,
delta=np.zeros_like(self.changepoints_t),
beta=np.zeros(num_total_regressors),
sigma_obs=1.0,
)
def fit(self, df, **kwargs):
"""Fit the Prophet model.
This sets self.params to contain the fitted model parameters. It is a
dictionary parameter names as keys and the following items:
k (Mx1 array): M posterior samples of the initial slope.
m (Mx1 array): The initial intercept.
delta (MxN array): The slope change at each of N changepoints.
beta (MxK matrix): Coefficients for K seasonality features.
sigma_obs (Mx1 array): Noise level.
Note that M=1 if MAP estimation.
Parameters
----------
df: pd.DataFrame containing the history. Must have columns ds (date
type) and y, the time series. If self.growth is 'logistic', then
df must also have a column cap that specifies the capacity at
each ds.
kwargs: Additional arguments passed to the optimizing or sampling
functions in Stan.
Returns
-------
The fitted Prophet object.
"""
if self.history is not None:
raise Exception('Prophet object can only be fit once. '
'Instantiate a new object.')
model_inputs = self.preprocess(df, **kwargs)
initial_params = self.calculate_initial_params(model_inputs.K)
dat = dataclasses.asdict(model_inputs)
stan_init = dataclasses.asdict(initial_params)
if self.history['y'].min() == self.history['y'].max() and \
(self.growth == 'linear' or self.growth == 'flat'):
self.params = stan_init
self.params['sigma_obs'] = 1e-9
for par in self.params:
self.params[par] = np.array([self.params[par]])
elif self.mcmc_samples > 0:
self.params = self.stan_backend.sampling(stan_init, dat, self.mcmc_samples, **kwargs)
else:
self.params = self.stan_backend.fit(stan_init, dat, **kwargs)
self.stan_fit = self.stan_backend.stan_fit
# If no changepoints were requested, replace delta with 0s
if len(self.changepoints) == 0:
# Fold delta into the base rate k
self.params['k'] = (
self.params['k'] + self.params['delta'].reshape(-1)
)
self.params['delta'] = (np.zeros(self.params['delta'].shape)
.reshape((-1, 1)))
return self
def predict(self, df: pd.DataFrame = None, vectorized: bool = True) -> pd.DataFrame:
"""Predict using the prophet model.
Parameters
----------
df: pd.DataFrame with dates for predictions (column ds), and capacity
(column cap) if logistic growth. If not provided, predictions are
made on the history.
vectorized: Whether to use a vectorized method to compute uncertainty intervals. Suggest using
True (the default) for much faster runtimes in most cases,
except when (growth = 'logistic' and mcmc_samples > 0).
Returns
-------
A pd.DataFrame with the forecast components.
"""
if self.history is None:
raise Exception('Model has not been fit.')
if df is None:
df = self.history.copy()
else:
if df.shape[0] == 0:
raise ValueError('Dataframe has no rows.')
df = self.setup_dataframe(df.copy())
df['trend'] = self.predict_trend(df)
seasonal_components = self.predict_seasonal_components(df)
if self.uncertainty_samples:
intervals = self.predict_uncertainty(df, vectorized)
else:
intervals = None
# Drop columns except ds, cap, floor, and trend
cols = ['ds', 'trend']
if 'cap' in df:
cols.append('cap')
if self.logistic_floor:
cols.append('floor')
# Add in forecast components
df2 = pd.concat((df[cols], intervals, seasonal_components), axis=1)
df2['yhat'] = (
df2['trend'] * (1 + df2['multiplicative_terms'])
+ df2['additive_terms']
)
return df2
@staticmethod
def piecewise_linear(t, deltas, k, m, changepoint_ts):
"""Evaluate the piecewise linear function.
Parameters
----------
t: np.array of times on which the function is evaluated.
deltas: np.array of rate changes at each changepoint.
k: Float initial rate.
m: Float initial offset.
changepoint_ts: np.array of changepoint times.
Returns
-------
Vector y(t).
"""
deltas_t = (changepoint_ts[None, :] <= t[..., None]) * deltas
k_t = deltas_t.sum(axis=1) + k
m_t = (deltas_t * -changepoint_ts).sum(axis=1) + m
return k_t * t + m_t
@staticmethod
def piecewise_logistic(t, cap, deltas, k, m, changepoint_ts):
"""Evaluate the piecewise logistic function.
Parameters
----------
t: np.array of times on which the function is evaluated.
cap: np.array of capacities at each t.
deltas: np.array of rate changes at each changepoint.
k: Float initial rate.
m: Float initial offset.
changepoint_ts: np.array of changepoint times.
Returns
-------
Vector y(t).
"""
# Compute offset changes
k_cum = np.concatenate((np.atleast_1d(k), np.cumsum(deltas) + k))
gammas = np.zeros(len(changepoint_ts))
for i, t_s in enumerate(changepoint_ts):
gammas[i] = (
(t_s - m - np.sum(gammas))
* (1 - k_cum[i] / k_cum[i + 1]) # noqa W503
)
# Get cumulative rate and offset at each t
k_t = k * np.ones_like(t)
m_t = m * np.ones_like(t)
for s, t_s in enumerate(changepoint_ts):
indx = t >= t_s
k_t[indx] += deltas[s]
m_t[indx] += gammas[s]
return cap / (1 + np.exp(-k_t * (t - m_t)))
@staticmethod
def flat_trend(t, m):
"""Evaluate the flat trend function.
Parameters
----------
t: np.array of times on which the function is evaluated.
m: Float initial offset.
Returns
-------
Vector y(t).
"""
m_t = m * np.ones_like(t)
return m_t
def predict_trend(self, df):
"""Predict trend using the prophet model.
Parameters
----------
df: Prediction dataframe.
Returns
-------
Vector with trend on prediction dates.
"""
k = np.nanmean(self.params['k'])
m = np.nanmean(self.params['m'])
deltas = np.nanmean(self.params['delta'], axis=0)
t = np.array(df['t'])
if self.growth == 'linear':
trend = self.piecewise_linear(t, deltas, k, m, self.changepoints_t)
elif self.growth == 'logistic':
cap = df['cap_scaled']
trend = self.piecewise_logistic(
t, cap, deltas, k, m, self.changepoints_t)
elif self.growth == 'flat':
# constant trend
trend = self.flat_trend(t, m)
return trend * self.y_scale + df['floor']
def predict_seasonal_components(self, df):
"""Predict seasonality components, holidays, and added regressors.
Parameters
----------
df: Prediction dataframe.
Returns
-------
Dataframe with seasonal components.
"""
seasonal_features, _, component_cols, _ = (
self.make_all_seasonality_features(df)
)
if self.uncertainty_samples:
lower_p = 100 * (1.0 - self.interval_width) / 2
upper_p = 100 * (1.0 + self.interval_width) / 2
X = seasonal_features.values
data = {}
for component in component_cols.columns:
beta_c = self.params['beta'] * component_cols[component].values
comp = np.matmul(X, beta_c.transpose())
if component in self.component_modes['additive']:
comp *= self.y_scale
data[component] = np.nanmean(comp, axis=1)
if self.uncertainty_samples:
data[component + '_lower'] = self.percentile(
comp, lower_p, axis=1,
)
data[component + '_upper'] = self.percentile(
comp, upper_p, axis=1,
)
return pd.DataFrame(data)
def predict_uncertainty(self, df: pd.DataFrame, vectorized: bool) -> pd.DataFrame:
"""Prediction intervals for yhat and trend.
Parameters
----------
df: Prediction dataframe.
vectorized: Whether to use a vectorized method for generating future draws.
Returns
-------
Dataframe with uncertainty intervals.
"""
sim_values = self.sample_posterior_predictive(df, vectorized)
lower_p = 100 * (1.0 - self.interval_width) / 2
upper_p = 100 * (1.0 + self.interval_width) / 2
series = {}
for key in ['yhat', 'trend']:
series['{}_lower'.format(key)] = self.percentile(
sim_values[key], lower_p, axis=1)
series['{}_upper'.format(key)] = self.percentile(
sim_values[key], upper_p, axis=1)
return pd.DataFrame(series)
def sample_posterior_predictive(self, df: pd.DataFrame, vectorized: bool) -> Dict[str, np.ndarray]:
"""Prophet posterior predictive samples.
Parameters
----------
df: Prediction dataframe.
vectorized: Whether to use a vectorized method to generate future draws.
Returns
-------
Dictionary with posterior predictive samples for the forecast yhat and
for the trend component.
"""
n_iterations = self.params['k'].shape[0]
samp_per_iter = max(1, int(np.ceil(
self.uncertainty_samples / float(n_iterations)
)))
# Generate seasonality features once so we can re-use them.
seasonal_features, _, component_cols, _ = (
self.make_all_seasonality_features(df)
)
sim_values = {'yhat': [], 'trend': []}
for i in range(n_iterations):
if vectorized:
sims = self.sample_model_vectorized(
df=df,
seasonal_features=seasonal_features,
iteration=i,
s_a=component_cols['additive_terms'],
s_m=component_cols['multiplicative_terms'],
n_samples=samp_per_iter
)
else:
sims = [
self.sample_model(
df=df,
seasonal_features=seasonal_features,
iteration=i,
s_a=component_cols['additive_terms'],
s_m=component_cols['multiplicative_terms'],
) for _ in range(samp_per_iter)
]
for key in sim_values:
for sim in sims:
sim_values[key].append(sim[key])
for k, v in sim_values.items():
sim_values[k] = np.column_stack(v)
return sim_values
def sample_model(self, df, seasonal_features, iteration, s_a, s_m) -> Dict[str, np.ndarray]:
"""Simulate observations from the extrapolated generative model.
Parameters
----------
df: Prediction dataframe.
seasonal_features: pd.DataFrame of seasonal features.
iteration: Int sampling iteration to use parameters from.
s_a: Indicator vector for additive components
s_m: Indicator vector for multiplicative components
Returns
-------
Dictionary with `yhat` and `trend`, each like df['t'].
"""
trend = self.sample_predictive_trend(df, iteration)
beta = self.params['beta'][iteration]
Xb_a = np.matmul(seasonal_features.values,
beta * s_a.values) * self.y_scale
Xb_m = np.matmul(seasonal_features.values, beta * s_m.values)
sigma = self.params['sigma_obs'][iteration]
noise = np.random.normal(0, sigma, df.shape[0]) * self.y_scale
return {
'yhat': trend * (1 + Xb_m) + Xb_a + noise,
'trend': trend
}
def sample_model_vectorized(
self,
df: pd.DataFrame,
seasonal_features: pd.DataFrame,
iteration: int,
s_a: np.ndarray,
s_m: np.ndarray,
n_samples: int,
) -> List[Dict[str, np.ndarray]]:
"""Simulate observations from the extrapolated generative model. Vectorized version of sample_model().
Parameters
----------
df: Prediction dataframe.
seasonal_features: pd.DataFrame of seasonal features.
iteration: Int sampling iteration to use parameters from.
s_a: Indicator vector for additive components.
s_m: Indicator vector for multiplicative components.
n_samples: Number of future paths of the trend to simulate.
Returns
-------
List (length n_samples) of dictionaries with arrays for trend and yhat, each ordered like df['t'].
"""
# Get the seasonality and regressor components, which are deterministic per iteration
beta = self.params['beta'][iteration]
Xb_a = np.matmul(seasonal_features.values,
beta * s_a.values) * self.y_scale
Xb_m = np.matmul(seasonal_features.values, beta * s_m.values)
# Get the future trend, which is stochastic per iteration
trends = self.sample_predictive_trend_vectorized(df, n_samples, iteration) # already on the same scale as the actual data
sigma = self.params['sigma_obs'][iteration]
noise_terms = np.random.normal(0, sigma, trends.shape) * self.y_scale
simulations = []
for trend, noise in zip(trends, noise_terms):
simulations.append({
'yhat': trend * (1 + Xb_m) + Xb_a + noise,
'trend': trend
})
return simulations
def sample_predictive_trend(self, df, iteration):
"""Simulate the trend using the extrapolated generative model.
Parameters
----------
df: Prediction dataframe.
iteration: Int sampling iteration to use parameters from.
Returns
-------
np.array of simulated trend over df['t'].
"""
k = self.params['k'][iteration]
m = self.params['m'][iteration]
deltas = self.params['delta'][iteration]
t = np.array(df['t'])
T = t.max()
# New changepoints from a Poisson process with rate S on [1, T]
if T > 1:
S = len(self.changepoints_t)
n_changes = np.random.poisson(S * (T - 1))
else:
n_changes = 0
if n_changes > 0:
changepoint_ts_new = 1 + np.random.rand(n_changes) * (T - 1)
changepoint_ts_new.sort()
else:
changepoint_ts_new = []
# Get the empirical scale of the deltas, plus epsilon to avoid NaNs.
lambda_ = np.mean(np.abs(deltas)) + 1e-8
# Sample deltas
deltas_new = np.random.laplace(0, lambda_, n_changes)
# Prepend the times and deltas from the history
changepoint_ts = np.concatenate((self.changepoints_t,
changepoint_ts_new))
deltas = np.concatenate((deltas, deltas_new))
if self.growth == 'linear':
trend = self.piecewise_linear(t, deltas, k, m, changepoint_ts)
elif self.growth == 'logistic':
cap = df['cap_scaled']
trend = self.piecewise_logistic(t, cap, deltas, k, m,
changepoint_ts)
elif self.growth == 'flat':
trend = self.flat_trend(t, m)
return trend * self.y_scale + df['floor']
def sample_predictive_trend_vectorized(self, df: pd.DataFrame, n_samples: int, iteration: int = 0) -> np.ndarray:
"""Sample draws of the future trend values. Vectorized version of sample_predictive_trend().
Parameters
----------
df: Prediction dataframe.
iteration: Int sampling iteration to use parameters from.
n_samples: Number of future paths of the trend to simulate.
Returns
-------
Draws of the trend values with shape (n_samples, len(df)). Values are on the scale of the original data.
"""
deltas = self.params["delta"][iteration]
m = self.params["m"][iteration]
k = self.params["k"][iteration]
if self.growth == "linear":
expected = self.piecewise_linear(df["t"].values, deltas, k, m, self.changepoints_t)
elif self.growth == "logistic":
expected = self.piecewise_logistic(
df["t"].values, df["cap_scaled"].values, deltas, k, m, self.changepoints_t
)
elif self.growth == "flat":
expected = self.flat_trend(df["t"].values, m)
else:
raise NotImplementedError
uncertainty = self._sample_uncertainty(df, n_samples, iteration)
return (
(np.tile(expected, (n_samples, 1)) + uncertainty) * self.y_scale +
np.tile(df["floor"].values, (n_samples, 1))
)
def _sample_uncertainty(self, df: pd.DataFrame, n_samples: int, iteration: int = 0) -> np.ndarray:
"""Sample draws of future trend changes, vectorizing as much as possible.
Parameters
----------
df: DataFrame with columns `t` (time scaled to the model context), trend, and cap.
n_samples: Number of future paths of the trend to simulate
iteration: The iteration of the parameter set to use. Default 0, the first iteration.
Returns
-------
Draws of the trend changes with shape (n_samples, len(df)). Values are standardized.
"""
# handle only historic data
if df["t"].max() <= 1:
# there is no trend uncertainty in historic trends
uncertainties = np.zeros((n_samples, len(df)))
else:
future_df = df.loc[df["t"] > 1]
n_length = len(future_df)
# handle 1 length futures by using history
if n_length > 1:
single_diff = np.diff(future_df["t"]).mean()
else:
single_diff = np.diff(self.history["t"]).mean()
change_likelihood = len(self.changepoints_t) * single_diff
deltas = self.params["delta"][iteration]
m = self.params["m"][iteration]
k = self.params["k"][iteration]
mean_delta = np.mean(np.abs(deltas)) + 1e-8
if self.growth == "linear":
mat = self._make_trend_shift_matrix(mean_delta, change_likelihood, n_length, n_samples=n_samples)
uncertainties = mat.cumsum(axis=1).cumsum(axis=1) # from slope changes to actual values
uncertainties *= single_diff # scaled by the actual meaning of the slope
elif self.growth == "logistic":
mat = self._make_trend_shift_matrix(mean_delta, change_likelihood, n_length, n_samples=n_samples)
uncertainties = self._logistic_uncertainty(
mat=mat,
deltas=deltas,
k=k,
m=m,
cap=future_df["cap_scaled"].values,
t_time=future_df["t"].values,
n_length=n_length,
single_diff=single_diff,
)
elif self.growth == "flat":
# no trend uncertainty when there is no growth
uncertainties = np.zeros((n_samples, n_length))
else:
raise NotImplementedError
# handle past included in dataframe
if df["t"].min() <= 1:
past_uncertainty = np.zeros((n_samples, np.sum(df["t"] <= 1)))
uncertainties = np.concatenate([past_uncertainty, uncertainties], axis=1)
return uncertainties
@staticmethod
def _make_trend_shift_matrix(
mean_delta: float, likelihood: float, future_length: float, n_samples: int
) -> np.ndarray:
"""
Creates a matrix of random trend shifts based on historical likelihood and size of shifts.
Can be used for either linear or logistic trend shifts.
Each row represents a different sample of a possible future, and each column is a time step into the future.
"""
# create a bool matrix of where these trend shifts should go
bool_slope_change = np.random.uniform(size=(n_samples, future_length)) < likelihood
shift_values = np.random.laplace(0, mean_delta, size=bool_slope_change.shape)
mat = shift_values * bool_slope_change
n_mat = np.hstack([np.zeros((len(mat), 1)), mat])[:, :-1]
mat = (n_mat + mat) / 2
return mat
@staticmethod
def _make_historical_mat_time(deltas, changepoints_t, t_time, n_row=1, single_diff=None):
"""
Creates a matrix of slope-deltas where these changes occured in training data according to the trained prophet obj
"""
if single_diff is None:
single_diff = np.diff(t_time).mean()
prev_time = np.arange(0, 1 + single_diff, single_diff)
idxs = []
for changepoint in changepoints_t:
idxs.append(np.where(prev_time > changepoint)[0][0])
prev_deltas = np.zeros(len(prev_time))
prev_deltas[idxs] = deltas
prev_deltas = np.repeat(prev_deltas.reshape(1, -1), n_row, axis=0)
return prev_deltas, prev_time
def _logistic_uncertainty(
self,
mat: np.ndarray,
deltas: np.ndarray,
k: float,
m: float,
cap: np.ndarray,
t_time: np.ndarray,
n_length: int,
single_diff: float = None,
) -> np.ndarray:
"""
Vectorizes prophet's logistic uncertainty by creating a matrix of future possible trends.
Parameters
----------
mat: A trend shift matrix returned by _make_trend_shift_matrix()
deltas: The size of the trend changes at each changepoint, estimated by the model
k: Float initial rate.
m: Float initial offset.
cap: np.array of capacities at each t.
t_time: The values of t in the model context (i.e. scaled so that anything > 1 represents the future)
n_length: For each path, the number of future steps to simulate
single_diff: The difference between each t step in the model context. Default None, inferred
from t_time.
Returns
-------
A numpy array with shape (n_samples, n_length), representing the width of the uncertainty interval
(standardized, not on the same scale as the actual data values) around 0.
"""
def ffill(arr):
mask = arr == 0
idx = np.where(~mask, np.arange(mask.shape[1]), 0)
np.maximum.accumulate(idx, axis=1, out=idx)
return arr[np.arange(idx.shape[0])[:, None], idx]
# for logistic growth we need to evaluate the trend all the way from the start of the train item
historical_mat, historical_time = self._make_historical_mat_time(deltas, self.changepoints_t, t_time, len(mat), single_diff)
mat = np.concatenate([historical_mat, mat], axis=1)
full_t_time = np.concatenate([historical_time, t_time])
# apply logistic growth logic on the slope changes
k_cum = np.concatenate((np.ones((mat.shape[0], 1)) * k, np.where(mat, np.cumsum(mat, axis=1) + k, 0)), axis=1)
k_cum_b = ffill(k_cum)
gammas = np.zeros_like(mat)
for i in range(mat.shape[1]):
x = full_t_time[i] - m - np.sum(gammas[:, :i], axis=1)
ks = 1 - k_cum_b[:, i] / k_cum_b[:, i + 1]
gammas[:, i] = x * ks
# the data before the -n_length is the historical values, which are not needed, so cut the last n_length
k_t = (mat.cumsum(axis=1) + k)[:, -n_length:]
m_t = (gammas.cumsum(axis=1) + m)[:, -n_length:]
sample_trends = cap / (1 + np.exp(-k_t * (t_time - m_t)))
# remove the mean because we only need width of the uncertainty centered around 0
# we will add the width to the main forecast - yhat (which is the mean) - later
return sample_trends - sample_trends.mean(axis=0)
def predictive_samples(self, df: pd.DataFrame, vectorized: bool = True):
"""Sample from the posterior predictive distribution. Returns samples
for the main estimate yhat, and for the trend component. The shape of
each output will be (nforecast x nsamples), where nforecast is the
number of points being forecasted (the number of rows in the input
dataframe) and nsamples is the number of posterior samples drawn.
This is the argument `uncertainty_samples` in the Prophet constructor,
which defaults to 1000.
Parameters
----------
df: Dataframe with dates for predictions (column ds), and capacity
(column cap) if logistic growth.
vectorized: Whether to use a vectorized method to compute possible draws. Suggest using
True (the default) for much faster runtimes in most cases,
except when (growth = 'logistic' and mcmc_samples > 0).
Returns
-------
Dictionary with keys "trend" and "yhat" containing
posterior predictive samples for that component.
"""
df = self.setup_dataframe(df.copy())
return self.sample_posterior_predictive(df, vectorized)
def percentile(self, a, *args, **kwargs):
"""
We rely on np.nanpercentile in the rare instances where there
are a small number of bad samples with MCMC that contain NaNs.
However, since np.nanpercentile is far slower than np.percentile,
we only fall back to it if the array contains NaNs. See
https://github.com/facebook/prophet/issues/1310 for more details.
"""
fn = np.nanpercentile if np.isnan(a).any() else np.percentile
return fn(a, *args, **kwargs)
def make_future_dataframe(self, periods, freq='D', include_history=True):
"""Simulate the trend using the extrapolated generative model.
Parameters
----------
periods: Int number of periods to forecast forward.
freq: Any valid frequency for pd.date_range, such as 'D' or 'M'.
include_history: Boolean to include the historical dates in the data
frame for predictions.
Returns
-------
pd.Dataframe that extends forward from the end of self.history for the
requested number of periods.
"""
if self.history_dates is None:
raise Exception('Model has not been fit.')
if freq is None:
# taking the tail makes freq inference more reliable
freq = pd.infer_freq(self.history_dates.tail(5))
# returns None if inference failed
if freq is None:
raise Exception('Unable to infer `freq`')
last_date = self.history_dates.max()
dates = pd.date_range(
start=last_date,
periods=periods + 1, # An extra in case we include start
freq=freq)
dates = dates[dates > last_date] # Drop start if equals last_date
dates = dates[:periods] # Return correct number of periods
if include_history:
dates = np.concatenate((np.array(self.history_dates), dates))
return pd.DataFrame({'ds': dates})
def plot(self, fcst, ax=None, uncertainty=True, plot_cap=True,
xlabel='ds', ylabel='y', figsize=(10, 6), include_legend=False):
"""Plot the Prophet forecast.
Parameters
----------
fcst: pd.DataFrame output of self.predict.
ax: Optional matplotlib axes on which to plot.
uncertainty: Optional boolean to plot uncertainty intervals.
plot_cap: Optional boolean indicating if the capacity should be shown
in the figure, if available.
xlabel: Optional label name on X-axis
ylabel: Optional label name on Y-axis
figsize: Optional tuple width, height in inches.
include_legend: Optional boolean to add legend to the plot.
Returns
-------
A matplotlib figure.
"""
return plot(
m=self, fcst=fcst, ax=ax, uncertainty=uncertainty,
plot_cap=plot_cap, xlabel=xlabel, ylabel=ylabel,
figsize=figsize, include_legend=include_legend
)
def plot_components(self, fcst, uncertainty=True, plot_cap=True,
weekly_start=0, yearly_start=0, figsize=None):
"""Plot the Prophet forecast components.
Will plot whichever are available of: trend, holidays, weekly
seasonality, and yearly seasonality.
Parameters
----------
fcst: pd.DataFrame output of self.predict.
uncertainty: Optional boolean to plot uncertainty intervals.
plot_cap: Optional boolean indicating if the capacity should be shown
in the figure, if available.
weekly_start: Optional int specifying the start day of the weekly
seasonality plot. 0 (default) starts the week on Sunday. 1 shifts
by 1 day to Monday, and so on.
yearly_start: Optional int specifying the start day of the yearly
seasonality plot. 0 (default) starts the year on Jan 1. 1 shifts
by 1 day to Jan 2, and so on.
figsize: Optional tuple width, height in inches.
Returns
-------
A matplotlib figure.
"""
return plot_components(
m=self, fcst=fcst, uncertainty=uncertainty, plot_cap=plot_cap,
weekly_start=weekly_start, yearly_start=yearly_start,
figsize=figsize
)