Files
2025-08-01 04:33:03 -04:00

1026 lines
36 KiB
Python

# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import absolute_import, division, print_function
import logging
import numpy as np
import pandas as pd
# TODO: separate performance_metrics into a different module. there is an implicit circular import between forecaster.py and diagnostics.py
from prophet.diagnostics import performance_metrics
logger = logging.getLogger('prophet.plot')
try:
from matplotlib import pyplot as plt
from matplotlib.dates import (
MonthLocator,
num2date,
AutoDateLocator,
AutoDateFormatter,
)
from matplotlib.ticker import FuncFormatter
from pandas.plotting import deregister_matplotlib_converters
deregister_matplotlib_converters()
except ImportError:
logger.error('Importing matplotlib failed. Plotting will not work.')
try:
import plotly.graph_objs as go
from plotly.subplots import make_subplots
except ImportError:
logger.error('Importing plotly failed. Interactive plots will not work.')
def plot(
m, fcst, ax=None, uncertainty=True, plot_cap=True, xlabel='ds', ylabel='y',
figsize=(10, 6), include_legend=False
):
"""Plot the Prophet forecast.
Parameters
----------
m: Prophet model.
fcst: pd.DataFrame output of m.predict.
ax: Optional matplotlib axes on which to plot.
uncertainty: Optional boolean to plot uncertainty intervals, which will
only be done if m.uncertainty_samples > 0.
plot_cap: Optional boolean indicating if the capacity should be shown
in the figure, if available.
xlabel: Optional label name on X-axis
ylabel: Optional label name on Y-axis
figsize: Optional tuple width, height in inches.
include_legend: Optional boolean to add legend to the plot.
Returns
-------
A matplotlib figure.
"""
user_provided_ax = False if ax is None else True
if ax is None:
fig = plt.figure(facecolor='w', figsize=figsize)
ax = fig.add_subplot(111)
else:
fig = ax.get_figure()
fcst_t = fcst['ds']
ax.plot(m.history['ds'], m.history['y'], 'k.',
label='Observed data points')
ax.plot(fcst_t, fcst['yhat'], ls='-', c='#0072B2', label='Forecast')
if 'cap' in fcst and plot_cap:
ax.plot(fcst_t, fcst['cap'], ls='--', c='k', label='Maximum capacity')
if m.logistic_floor and 'floor' in fcst and plot_cap:
ax.plot(fcst_t, fcst['floor'], ls='--', c='k', label='Minimum capacity')
if uncertainty and m.uncertainty_samples:
ax.fill_between(fcst_t, fcst['yhat_lower'], fcst['yhat_upper'],
color='#0072B2', alpha=0.2, label='Uncertainty interval')
# Specify formatting to workaround matplotlib issue #12925
locator = AutoDateLocator(interval_multiples=False)
formatter = AutoDateFormatter(locator)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
if include_legend:
ax.legend()
if not user_provided_ax:
fig.tight_layout()
return fig
def plot_components(
m, fcst, uncertainty=True, plot_cap=True, weekly_start=0, yearly_start=0,
figsize=None
):
"""Plot the Prophet forecast components.
Will plot whichever are available of: trend, holidays, weekly
seasonality, yearly seasonality, and additive and multiplicative extra
regressors.
Parameters
----------
m: Prophet model.
fcst: pd.DataFrame output of m.predict.
uncertainty: Optional boolean to plot uncertainty intervals, which will
only be done if m.uncertainty_samples > 0.
plot_cap: Optional boolean indicating if the capacity should be shown
in the figure, if available.
weekly_start: Optional int specifying the start day of the weekly
seasonality plot. 0 (default) starts the week on Sunday. 1 shifts
by 1 day to Monday, and so on.
yearly_start: Optional int specifying the start day of the yearly
seasonality plot. 0 (default) starts the year on Jan 1. 1 shifts
by 1 day to Jan 2, and so on.
figsize: Optional tuple width, height in inches.
Returns
-------
A matplotlib figure.
"""
# Identify components to be plotted
components = ['trend']
if m.train_holiday_names is not None and 'holidays' in fcst:
components.append('holidays')
# Plot weekly seasonality, if present
if 'weekly' in m.seasonalities and 'weekly' in fcst:
components.append('weekly')
# Yearly if present
if 'yearly' in m.seasonalities and 'yearly' in fcst:
components.append('yearly')
# Other seasonalities
components.extend([
name for name in sorted(m.seasonalities)
if name in fcst and name not in ['weekly', 'yearly']
])
regressors = {'additive': False, 'multiplicative': False}
for name, props in m.extra_regressors.items():
regressors[props['mode']] = True
for mode in ['additive', 'multiplicative']:
if regressors[mode] and 'extra_regressors_{}'.format(mode) in fcst:
components.append('extra_regressors_{}'.format(mode))
npanel = len(components)
figsize = figsize if figsize else (9, 3 * npanel)
fig, axes = plt.subplots(npanel, 1, facecolor='w', figsize=figsize)
if npanel == 1:
axes = [axes]
multiplicative_axes = []
dt = m.history['ds'].diff()
min_dt = dt.iloc[dt.values.nonzero()[0]].min()
for ax, plot_name in zip(axes, components):
if plot_name == 'trend':
plot_forecast_component(
m=m, fcst=fcst, name='trend', ax=ax, uncertainty=uncertainty,
plot_cap=plot_cap,
)
elif plot_name in m.seasonalities:
if (
(plot_name == 'weekly' or m.seasonalities[plot_name]['period'] == 7)
and (min_dt == pd.Timedelta(days=1))
):
plot_weekly(
m=m, name=plot_name, ax=ax, uncertainty=uncertainty, weekly_start=weekly_start
)
elif plot_name == 'yearly' or m.seasonalities[plot_name]['period'] == 365.25:
plot_yearly(
m=m, name=plot_name, ax=ax, uncertainty=uncertainty, yearly_start=yearly_start
)
else:
plot_seasonality(
m=m, name=plot_name, ax=ax, uncertainty=uncertainty,
)
elif plot_name in [
'holidays',
'extra_regressors_additive',
'extra_regressors_multiplicative',
]:
plot_forecast_component(
m=m, fcst=fcst, name=plot_name, ax=ax, uncertainty=uncertainty,
plot_cap=False,
)
if plot_name in m.component_modes['multiplicative']:
multiplicative_axes.append(ax)
fig.tight_layout()
# Reset multiplicative axes labels after tight_layout adjustment
for ax in multiplicative_axes:
ax = set_y_as_percent(ax)
return fig
def plot_forecast_component(
m, fcst, name, ax=None, uncertainty=True, plot_cap=False, figsize=(10, 6)
):
"""Plot a particular component of the forecast.
Parameters
----------
m: Prophet model.
fcst: pd.DataFrame output of m.predict.
name: Name of the component to plot.
ax: Optional matplotlib Axes to plot on.
uncertainty: Optional boolean to plot uncertainty intervals, which will
only be done if m.uncertainty_samples > 0.
plot_cap: Optional boolean indicating if the capacity should be shown
in the figure, if available.
figsize: Optional tuple width, height in inches.
Returns
-------
a list of matplotlib artists
"""
artists = []
if not ax:
fig = plt.figure(facecolor='w', figsize=figsize)
ax = fig.add_subplot(111)
fcst_t = fcst['ds']
artists += ax.plot(fcst_t, fcst[name], ls='-', c='#0072B2')
if 'cap' in fcst and plot_cap:
artists += ax.plot(fcst_t, fcst['cap'], ls='--', c='k')
if m.logistic_floor and 'floor' in fcst and plot_cap:
ax.plot(fcst_t, fcst['floor'], ls='--', c='k')
if uncertainty and m.uncertainty_samples:
artists += [ax.fill_between(
fcst_t, fcst[name + '_lower'], fcst[name + '_upper'],
color='#0072B2', alpha=0.2)]
# Specify formatting to workaround matplotlib issue #12925
locator = AutoDateLocator(interval_multiples=False)
formatter = AutoDateFormatter(locator)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
ax.set_xlabel('ds')
ax.set_ylabel(name)
if name in m.component_modes['multiplicative']:
ax = set_y_as_percent(ax)
return artists
def seasonality_plot_df(m, ds):
"""Prepare dataframe for plotting seasonal components.
Parameters
----------
m: Prophet model.
ds: List of dates for column ds.
Returns
-------
A dataframe with seasonal components on ds.
"""
df_dict = {'ds': ds, 'cap': 1., 'floor': 0.}
for name in m.extra_regressors:
df_dict[name] = 0.
# Activate all conditional seasonality columns
for props in m.seasonalities.values():
if props['condition_name'] is not None:
df_dict[props['condition_name']] = True
df = pd.DataFrame(df_dict)
df = m.setup_dataframe(df)
return df
def plot_weekly(m, ax=None, uncertainty=True, weekly_start=0, figsize=(10, 6), name='weekly'):
"""Plot the weekly component of the forecast.
Parameters
----------
m: Prophet model.
ax: Optional matplotlib Axes to plot on. One will be created if this
is not provided.
uncertainty: Optional boolean to plot uncertainty intervals, which will
only be done if m.uncertainty_samples > 0.
weekly_start: Optional int specifying the start day of the weekly
seasonality plot. 0 (default) starts the week on Sunday. 1 shifts
by 1 day to Monday, and so on.
figsize: Optional tuple width, height in inches.
name: Name of seasonality component if changed from default 'weekly'.
Returns
-------
a list of matplotlib artists
"""
artists = []
if not ax:
fig = plt.figure(facecolor='w', figsize=figsize)
ax = fig.add_subplot(111)
# Compute weekly seasonality for a Sun-Sat sequence of dates.
days = (pd.date_range(start='2017-01-01', periods=7) +
pd.Timedelta(days=weekly_start))
df_w = seasonality_plot_df(m, days)
seas = m.predict_seasonal_components(df_w)
days = days.day_name()
artists += ax.plot(range(len(days)), seas[name], ls='-',
c='#0072B2')
if uncertainty and m.uncertainty_samples:
artists += [ax.fill_between(range(len(days)),
seas[name + '_lower'], seas[name + '_upper'],
color='#0072B2', alpha=0.2)]
ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
ax.set_xticks(range(len(days)))
ax.set_xticklabels(days)
ax.set_xlabel('Day of week')
ax.set_ylabel(name)
if m.seasonalities[name]['mode'] == 'multiplicative':
ax = set_y_as_percent(ax)
return artists
def plot_yearly(m, ax=None, uncertainty=True, yearly_start=0, figsize=(10, 6), name='yearly'):
"""Plot the yearly component of the forecast.
Parameters
----------
m: Prophet model.
ax: Optional matplotlib Axes to plot on. One will be created if
this is not provided.
uncertainty: Optional boolean to plot uncertainty intervals, which will
only be done if m.uncertainty_samples > 0.
yearly_start: Optional int specifying the start day of the yearly
seasonality plot. 0 (default) starts the year on Jan 1. 1 shifts
by 1 day to Jan 2, and so on.
figsize: Optional tuple width, height in inches.
name: Name of seasonality component if previously changed from default 'yearly'.
Returns
-------
a list of matplotlib artists
"""
artists = []
if not ax:
fig = plt.figure(facecolor='w', figsize=figsize)
ax = fig.add_subplot(111)
# Compute yearly seasonality for a Jan 1 - Dec 31 sequence of dates.
days = (pd.date_range(start='2017-01-01', periods=365) +
pd.Timedelta(days=yearly_start))
df_y = seasonality_plot_df(m, days)
seas = m.predict_seasonal_components(df_y)
artists += ax.plot(
df_y['ds'], seas[name], ls='-', c='#0072B2')
if uncertainty and m.uncertainty_samples:
artists += [ax.fill_between(
df_y['ds'], seas[name + '_lower'],
seas[name + '_upper'], color='#0072B2', alpha=0.2)]
ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
months = MonthLocator(range(1, 13), bymonthday=1, interval=2)
ax.xaxis.set_major_formatter(FuncFormatter(
lambda x, pos=None: '{dt:%B} {dt.day}'.format(dt=num2date(x))))
ax.xaxis.set_major_locator(months)
ax.set_xlabel('Day of year')
ax.set_ylabel(name)
if m.seasonalities[name]['mode'] == 'multiplicative':
ax = set_y_as_percent(ax)
return artists
def plot_seasonality(m, name, ax=None, uncertainty=True, figsize=(10, 6)):
"""Plot a custom seasonal component.
Parameters
----------
m: Prophet model.
name: Seasonality name, like 'daily', 'weekly'.
ax: Optional matplotlib Axes to plot on. One will be created if
this is not provided.
uncertainty: Optional boolean to plot uncertainty intervals, which will
only be done if m.uncertainty_samples > 0.
figsize: Optional tuple width, height in inches.
Returns
-------
a list of matplotlib artists
"""
artists = []
if not ax:
fig = plt.figure(facecolor='w', figsize=figsize)
ax = fig.add_subplot(111)
# Compute seasonality from Jan 1 through a single period.
start = pd.to_datetime('2017-01-01 0000')
period = m.seasonalities[name]['period']
end = start + pd.Timedelta(days=period)
plot_points = 200
days = pd.to_datetime(np.linspace(start.value, end.value, plot_points))
df_y = seasonality_plot_df(m, days)
seas = m.predict_seasonal_components(df_y)
artists += ax.plot(df_y['ds'], seas[name], ls='-',
c='#0072B2')
if uncertainty and m.uncertainty_samples:
artists += [ax.fill_between(
df_y['ds'], seas[name + '_lower'],
seas[name + '_upper'], color='#0072B2', alpha=0.2)]
ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
n_ticks = 8
xticks = pd.to_datetime(np.linspace(start.value, end.value, n_ticks)
).to_pydatetime()
ax.set_xticks(xticks)
if name == 'yearly':
fmt = FuncFormatter(
lambda x, pos=None: '{dt:%B} {dt.day}'.format(dt=num2date(x)))
ax.set_xlabel('Day of year')
elif name == 'weekly':
fmt = FuncFormatter(
lambda x, pos=None: '{dt:%A}'.format(dt=num2date(x)))
ax.set_xlabel('Day of Week')
elif name == 'daily':
fmt = FuncFormatter(
lambda x, pos=None: '{dt:%T}'.format(dt=num2date(x)))
ax.set_xlabel('Hour of day')
elif period <= 2:
fmt = FuncFormatter(
lambda x, pos=None: '{dt:%T}'.format(dt=num2date(x)))
ax.set_xlabel('Hours')
else:
fmt = FuncFormatter(
lambda x, pos=None: '{:.0f}'.format(pos * period / (n_ticks - 1)))
ax.set_xlabel('Days')
ax.xaxis.set_major_formatter(fmt)
ax.set_ylabel(name)
if m.seasonalities[name]['mode'] == 'multiplicative':
ax = set_y_as_percent(ax)
return artists
def set_y_as_percent(ax):
yticks = 100 * ax.get_yticks()
yticklabels = ['{0:.4g}%'.format(y) for y in yticks]
ax.set_yticks(ax.get_yticks().tolist())
ax.set_yticklabels(yticklabels)
return ax
def add_changepoints_to_plot(
ax, m, fcst, threshold=0.01, cp_color='r', cp_linestyle='--', trend=True,
):
"""Add markers for significant changepoints to prophet forecast plot.
Example:
fig = m.plot(forecast)
add_changepoints_to_plot(fig.gca(), m, forecast)
Parameters
----------
ax: axis on which to overlay changepoint markers.
m: Prophet model.
fcst: Forecast output from m.predict.
threshold: Threshold on trend change magnitude for significance.
cp_color: Color of changepoint markers.
cp_linestyle: Linestyle for changepoint markers.
trend: If True, will also overlay the trend.
Returns
-------
a list of matplotlib artists
"""
artists = []
if trend:
artists.append(ax.plot(fcst['ds'], fcst['trend'], c=cp_color))
signif_changepoints = m.changepoints[
np.abs(np.nanmean(m.params['delta'], axis=0)) >= threshold
] if len(m.changepoints) > 0 else []
for cp in signif_changepoints:
artists.append(ax.axvline(x=cp, c=cp_color, ls=cp_linestyle))
return artists
def plot_cross_validation_metric(
df_cv, metric, rolling_window=0.1, ax=None, figsize=(10, 6), color='b',
point_color='gray'
):
"""Plot a performance metric vs. forecast horizon from cross validation.
Cross validation produces a collection of out-of-sample model predictions
that can be compared to actual values, at a range of different horizons
(distance from the cutoff). This computes a specified performance metric
for each prediction, and aggregated over a rolling window with horizon.
This uses prophet.diagnostics.performance_metrics to compute the metrics.
Valid values of metric are 'mse', 'rmse', 'mae', 'mape', 'mdape', 'smape', and 'coverage'.
rolling_window is the proportion of data included in the rolling window of
aggregation. The default value of 0.1 means 10% of data are included in the
aggregation for computing the metric.
As a concrete example, if metric='mse', then this plot will show the
squared error for each cross validation prediction, along with the MSE
averaged over rolling windows of 10% of the data.
Parameters
----------
df_cv: The output from prophet.diagnostics.cross_validation.
metric: Metric name, one of ['mse', 'rmse', 'mae', 'mape', 'mdape', 'smape', 'coverage'].
rolling_window: Proportion of data to use for rolling average of metric.
In [0, 1]. Defaults to 0.1.
ax: Optional matplotlib axis on which to plot. If not given, a new figure
will be created.
figsize: Optional tuple width, height in inches.
color: Optional color for plot and error points, useful when plotting
multiple model performances on one axis for comparison.
Returns
-------
a matplotlib figure.
"""
if ax is None:
fig = plt.figure(facecolor='w', figsize=figsize)
ax = fig.add_subplot(111)
else:
fig = ax.get_figure()
# Get the metric at the level of individual predictions, and with the rolling window.
df_none = performance_metrics(df_cv, metrics=[metric], rolling_window=-1)
df_h = performance_metrics(df_cv, metrics=[metric], rolling_window=rolling_window)
# Some work because matplotlib does not handle timedelta
# Target ~10 ticks.
tick_w = max(df_none['horizon'].astype('timedelta64[ns]')) / 10.
# Find the largest time resolution that has <1 unit per bin.
dts = ['D', 'h', 'm', 's', 'ms', 'us', 'ns']
dt_names = [
'days', 'hours', 'minutes', 'seconds', 'milliseconds', 'microseconds',
'nanoseconds'
]
dt_conversions = [
24 * 60 * 60 * 10 ** 9,
60 * 60 * 10 ** 9,
60 * 10 ** 9,
10 ** 9,
10 ** 6,
10 ** 3,
1.,
]
for i, dt in enumerate(dts):
if np.timedelta64(1, dt) < np.timedelta64(tick_w, 'ns'):
break
x_plt = df_none['horizon'].astype('timedelta64[ns]').view(np.int64) / float(dt_conversions[i])
x_plt_h = df_h['horizon'].astype('timedelta64[ns]').view(np.int64) / float(dt_conversions[i])
ax.plot(x_plt, df_none[metric], '.', alpha=0.1, c=point_color)
ax.plot(x_plt_h, df_h[metric], '-', c=color)
ax.grid(True)
ax.set_xlabel('Horizon ({})'.format(dt_names[i]))
ax.set_ylabel(metric)
return fig
def plot_plotly(m, fcst, uncertainty=True, plot_cap=True, trend=False, changepoints=False,
changepoints_threshold=0.01, xlabel='ds', ylabel='y', figsize=(900, 600)):
"""Plot the Prophet forecast with Plotly offline.
Plotting in Jupyter Notebook requires initializing plotly.offline.init_notebook_mode():
>>> import plotly.offline as py
>>> py.init_notebook_mode()
Then the figure can be displayed using plotly.offline.iplot(...):
>>> fig = plot_plotly(m, fcst)
>>> py.iplot(fig)
see https://plot.ly/python/offline/ for details
Parameters
----------
m: Prophet model.
fcst: pd.DataFrame output of m.predict.
uncertainty: Optional boolean to plot uncertainty intervals.
plot_cap: Optional boolean indicating if the capacity should be shown
in the figure, if available.
trend: Optional boolean to plot trend
changepoints: Optional boolean to plot changepoints
changepoints_threshold: Threshold on trend change magnitude for significance.
xlabel: Optional label name on X-axis
ylabel: Optional label name on Y-axis
figsize: The plot's size (in px).
Returns
-------
A Plotly Figure.
"""
prediction_color = '#0072B2'
error_color = 'rgba(0, 114, 178, 0.2)' # '#0072B2' with 0.2 opacity
actual_color = 'black'
cap_color = 'black'
trend_color = '#B23B00'
line_width = 2
marker_size = 4
data = []
# Add actual
data.append(go.Scatter(
name='Actual',
x=m.history['ds'],
y=m.history['y'],
marker=dict(color=actual_color, size=marker_size),
mode='markers'
))
# Add lower bound
if uncertainty and m.uncertainty_samples:
data.append(go.Scatter(
x=fcst['ds'],
y=fcst['yhat_lower'],
mode='lines',
line=dict(width=0),
hoverinfo='skip'
))
# Add prediction
data.append(go.Scatter(
name='Predicted',
x=fcst['ds'],
y=fcst['yhat'],
mode='lines',
line=dict(color=prediction_color, width=line_width),
fillcolor=error_color,
fill='tonexty' if uncertainty and m.uncertainty_samples else 'none'
))
# Add upper bound
if uncertainty and m.uncertainty_samples:
data.append(go.Scatter(
x=fcst['ds'],
y=fcst['yhat_upper'],
mode='lines',
line=dict(width=0),
fillcolor=error_color,
fill='tonexty',
hoverinfo='skip'
))
# Add caps
if 'cap' in fcst and plot_cap:
data.append(go.Scatter(
name='Cap',
x=fcst['ds'],
y=fcst['cap'],
mode='lines',
line=dict(color=cap_color, dash='dash', width=line_width),
))
if m.logistic_floor and 'floor' in fcst and plot_cap:
data.append(go.Scatter(
name='Floor',
x=fcst['ds'],
y=fcst['floor'],
mode='lines',
line=dict(color=cap_color, dash='dash', width=line_width),
))
# Add trend
if trend:
data.append(go.Scatter(
name='Trend',
x=fcst['ds'],
y=fcst['trend'],
mode='lines',
line=dict(color=trend_color, width=line_width),
))
# Add changepoints
if changepoints and len(m.changepoints) > 0:
signif_changepoints = m.changepoints[
np.abs(np.nanmean(m.params['delta'], axis=0)) >= changepoints_threshold
]
data.append(go.Scatter(
x=signif_changepoints,
y=fcst.loc[fcst['ds'].isin(signif_changepoints), 'trend'],
marker=dict(size=50, symbol='line-ns-open', color=trend_color,
line=dict(width=line_width)),
mode='markers',
hoverinfo='skip'
))
layout = dict(
showlegend=False,
width=figsize[0],
height=figsize[1],
yaxis=dict(
title=ylabel
),
xaxis=dict(
title=xlabel,
type='date',
rangeselector=dict(
buttons=list([
dict(count=7,
label='1w',
step='day',
stepmode='backward'),
dict(count=1,
label='1m',
step='month',
stepmode='backward'),
dict(count=6,
label='6m',
step='month',
stepmode='backward'),
dict(count=1,
label='1y',
step='year',
stepmode='backward'),
dict(step='all')
])
),
rangeslider=dict(
visible=True
),
),
)
fig = go.Figure(data=data, layout=layout)
return fig
def plot_components_plotly(
m, fcst, uncertainty=True, plot_cap=True, figsize=(900, 200)):
"""Plot the Prophet forecast components using Plotly.
See plot_plotly() for Plotly setup instructions
Will plot whichever are available of: trend, holidays, weekly
seasonality, yearly seasonality, and additive and multiplicative extra
regressors.
Parameters
----------
m: Prophet model.
fcst: pd.DataFrame output of m.predict.
uncertainty: Optional boolean to plot uncertainty intervals, which will
only be done if m.uncertainty_samples > 0.
plot_cap: Optional boolean indicating if the capacity should be shown
in the figure, if available.
figsize: Set the size for the subplots (in px).
Returns
-------
A Plotly Figure.
"""
# Identify components to plot and get their Plotly props
components = {}
components['trend'] = get_forecast_component_plotly_props(
m, fcst, 'trend', uncertainty, plot_cap)
if m.train_holiday_names is not None and 'holidays' in fcst:
components['holidays'] = get_forecast_component_plotly_props(
m, fcst, 'holidays', uncertainty)
regressors = {'additive': False, 'multiplicative': False}
for name, props in m.extra_regressors.items():
regressors[props['mode']] = True
for mode in ['additive', 'multiplicative']:
if regressors[mode] and 'extra_regressors_{}'.format(mode) in fcst:
components['extra_regressors_{}'.format(mode)] = get_forecast_component_plotly_props(
m, fcst, 'extra_regressors_{}'.format(mode))
for seasonality in m.seasonalities:
components[seasonality] = get_seasonality_plotly_props(m, seasonality)
# Create Plotly subplot figure and add the components to it
fig = make_subplots(rows=len(components), cols=1, print_grid=False)
fig['layout'].update(go.Layout(
showlegend=False,
width=figsize[0],
height=figsize[1] * len(components)
))
for i, name in enumerate(components):
if i == 0:
xaxis = fig['layout']['xaxis']
yaxis = fig['layout']['yaxis']
else:
xaxis = fig['layout']['xaxis{}'.format(i + 1)]
yaxis = fig['layout']['yaxis{}'.format(i + 1)]
xaxis.update(components[name]['xaxis'])
yaxis.update(components[name]['yaxis'])
for trace in components[name]['traces']:
fig.append_trace(trace, i + 1, 1)
return fig
def plot_forecast_component_plotly(m, fcst, name, uncertainty=True, plot_cap=False, figsize=(900, 300)):
"""Plot a particular component of the forecast using Plotly.
See plot_plotly() for Plotly setup instructions
Parameters
----------
m: Prophet model.
fcst: pd.DataFrame output of m.predict.
name: Name of the component to plot.
uncertainty: Optional boolean to plot uncertainty intervals, which will
only be done if m.uncertainty_samples > 0.
plot_cap: Optional boolean indicating if the capacity should be shown
in the figure, if available.
figsize: The plot's size (in px).
Returns
-------
A Plotly Figure.
"""
props = get_forecast_component_plotly_props(m, fcst, name, uncertainty, plot_cap)
layout = go.Layout(
width=figsize[0],
height=figsize[1],
showlegend=False,
xaxis=props['xaxis'],
yaxis=props['yaxis']
)
fig = go.Figure(data=props['traces'], layout=layout)
return fig
def plot_seasonality_plotly(m, name, uncertainty=True, figsize=(900, 300)):
"""Plot a custom seasonal component using Plotly.
See plot_plotly() for Plotly setup instructions
Parameters
----------
m: Prophet model.
name: Seasonality name, like 'daily', 'weekly'.
uncertainty: Optional boolean to plot uncertainty intervals, which will
only be done if m.uncertainty_samples > 0.
figsize: Set the plot's size (in px).
Returns
-------
A Plotly Figure.
"""
props = get_seasonality_plotly_props(m, name, uncertainty)
layout = go.Layout(
width=figsize[0],
height=figsize[1],
showlegend=False,
xaxis=props['xaxis'],
yaxis=props['yaxis']
)
fig = go.Figure(data=props['traces'], layout=layout)
return fig
def get_forecast_component_plotly_props(m, fcst, name, uncertainty=True, plot_cap=False):
"""Prepares a dictionary for plotting the selected forecast component with Plotly
Parameters
----------
m: Prophet model.
fcst: pd.DataFrame output of m.predict.
name: Name of the component to plot.
uncertainty: Optional boolean to plot uncertainty intervals, which will
only be done if m.uncertainty_samples > 0.
plot_cap: Optional boolean indicating if the capacity should be shown
in the figure, if available.
Returns
-------
A dictionary with Plotly traces, xaxis and yaxis
"""
prediction_color = '#0072B2'
error_color = 'rgba(0, 114, 178, 0.2)' # '#0072B2' with 0.2 opacity
cap_color = 'black'
zeroline_color = '#AAA'
line_width = 2
range_margin = (fcst['ds'].max() - fcst['ds'].min()) * 0.05
range_x = [fcst['ds'].min() - range_margin, fcst['ds'].max() + range_margin]
text = None
mode = 'lines'
if name == 'holidays':
# Combine holidays into one hover text
holidays = m.construct_holiday_dataframe(fcst['ds'])
holiday_features, _, _ = m.make_holiday_features(fcst['ds'], holidays)
holiday_features.columns = holiday_features.columns.str.replace('_delim_', '', regex=False)
holiday_features.columns = holiday_features.columns.str.replace('+0', '', regex=False)
text = pd.Series(data='', index=holiday_features.index)
for holiday_feature, idxs in holiday_features.items():
text[idxs.astype(bool) & (text != '')] += '<br>' # Add newline if additional holiday
text[idxs.astype(bool)] += holiday_feature
traces = []
traces.append(go.Scatter(
name=name,
x=fcst['ds'],
y=fcst[name],
mode=mode,
line=go.scatter.Line(color=prediction_color, width=line_width),
text=text,
))
if uncertainty and m.uncertainty_samples and (fcst[name + '_upper'] != fcst[name + '_lower']).any():
if mode == 'markers':
traces[0].update(
error_y=dict(
type='data',
symmetric=False,
array=fcst[name + '_upper'],
arrayminus=fcst[name + '_lower'],
width=0,
color=error_color
)
)
else:
traces.append(go.Scatter(
name=name + '_upper',
x=fcst['ds'],
y=fcst[name + '_upper'],
mode=mode,
line=go.scatter.Line(width=0, color=error_color)
))
traces.append(go.Scatter(
name=name + '_lower',
x=fcst['ds'],
y=fcst[name + '_lower'],
mode=mode,
line=go.scatter.Line(width=0, color=error_color),
fillcolor=error_color,
fill='tonexty'
))
if 'cap' in fcst and plot_cap:
traces.append(go.Scatter(
name='Cap',
x=fcst['ds'],
y=fcst['cap'],
mode='lines',
line=go.scatter.Line(color=cap_color, dash='dash', width=line_width),
))
if m.logistic_floor and 'floor' in fcst and plot_cap:
traces.append(go.Scatter(
name='Floor',
x=fcst['ds'],
y=fcst['floor'],
mode='lines',
line=go.scatter.Line(color=cap_color, dash='dash', width=line_width),
))
xaxis = go.layout.XAxis(
type='date',
range=range_x)
yaxis = go.layout.YAxis(rangemode='normal' if name == 'trend' else 'tozero',
title=go.layout.yaxis.Title(text=name),
zerolinecolor=zeroline_color)
if name in m.component_modes['multiplicative']:
yaxis.update(tickformat='%', hoverformat='.2%')
return {'traces': traces, 'xaxis': xaxis, 'yaxis': yaxis}
def get_seasonality_plotly_props(m, name, uncertainty=True):
"""Prepares a dictionary for plotting the selected seasonality with Plotly
Parameters
----------
m: Prophet model.
name: Name of the component to plot.
uncertainty: Optional boolean to plot uncertainty intervals, which will
only be done if m.uncertainty_samples > 0.
Returns
-------
A dictionary with Plotly traces, xaxis and yaxis
"""
prediction_color = '#0072B2'
error_color = 'rgba(0, 114, 178, 0.2)' # '#0072B2' with 0.2 opacity
line_width = 2
zeroline_color = '#AAA'
# Compute seasonality from Jan 1 through a single period.
start = pd.to_datetime('2017-01-01 0000')
period = m.seasonalities[name]['period']
end = start + pd.Timedelta(days=period)
if (m.history['ds'].dt.hour == 0).all(): # Day Precision
plot_points = np.floor(period).astype(int)
elif (m.history['ds'].dt.minute == 0).all(): # Hour Precision
plot_points = np.floor(period * 24).astype(int)
else: # Minute Precision
plot_points = np.floor(period * 24 * 60).astype(int)
days = pd.to_datetime(np.linspace(start.value, end.value, plot_points, endpoint=False))
df_y = seasonality_plot_df(m, days)
seas = m.predict_seasonal_components(df_y)
traces = []
traces.append(go.Scatter(
name=name,
x=df_y['ds'],
y=seas[name],
mode='lines',
line=go.scatter.Line(color=prediction_color, width=line_width)
))
if uncertainty and m.uncertainty_samples and (seas[name + '_upper'] != seas[name + '_lower']).any():
traces.append(go.Scatter(
name=name + '_upper',
x=df_y['ds'],
y=seas[name + '_upper'],
mode='lines',
line=go.scatter.Line(width=0, color=error_color)
))
traces.append(go.Scatter(
name=name + '_lower',
x=df_y['ds'],
y=seas[name + '_lower'],
mode='lines',
line=go.scatter.Line(width=0, color=error_color),
fillcolor=error_color,
fill='tonexty'
))
# Set tick formats (examples are based on 2017-01-06 21:15)
if period <= 2:
tickformat = '%H:%M' # "21:15"
elif period < 7:
tickformat = '%A %H:%M' # "Friday 21:15"
elif period < 14:
tickformat = '%A' # "Friday"
else:
tickformat = '%B %e' # "January 6"
range_margin = (df_y['ds'].max() - df_y['ds'].min()) * 0.05
xaxis = go.layout.XAxis(
tickformat=tickformat,
type='date',
range=[df_y['ds'].min() - range_margin, df_y['ds'].max() + range_margin]
)
yaxis = go.layout.YAxis(title=go.layout.yaxis.Title(text=name),
zerolinecolor=zeroline_color)
if m.seasonalities[name]['mode'] == 'multiplicative':
yaxis.update(tickformat='%', hoverformat='.2%')
return {'traces': traces, 'xaxis': xaxis, 'yaxis': yaxis}